Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices

Let $q$ be a prime power and $r=0,1\ldots, q-3$. Using the Latin squares obtained by multiplying each entry of the addition table of the Galois field of order $q$ by an element distinct from zero, we obtain the incidence matrices of projective planes and the incidence matrices of $(q-r)$-regular bipartite graphs of girth 6 and $q^2-rq-1$ vertices in each partite set. Moreover, in this work two Latin squares of order $q-1$ with entries belonging to $\{0,1,\ldots, q\}$, not necessarily the same, are defined to be quasi row-disjoint if and only if the Cartesian product of any two rows contains at most one pair $(x,x)$ with $x\ne 0$. Using these quasi row-disjoint Latin squares we find $(q-1)$-regular bipartite graphs of girth 6 with $q^2-q-2$ vertices in each partite set. Some of these graphs have the smallest number of vertices known so far among the regular graphs with girth 6.

[1]  M. O'Keefe,et al.  The smallest graph of girth 6 and valency 7 , 1981, J. Graph Theory.

[2]  Brendan D. McKay,et al.  The Smallest Cubic Graphs of Girth Nine , 1995, Combinatorics, Probability and Computing.

[3]  M. O'Keefe,et al.  A smallest graph of girth 5 and valency 6 , 1979, J. Comb. Theory, Ser. B.

[4]  Markus Meringer,et al.  Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.

[5]  Walter Feit,et al.  The nonexistence of certain generalized polygons , 1964 .

[6]  Vito Napolitano,et al.  Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .

[7]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[8]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[9]  Norman Biggs,et al.  Constructions for Cubic Graphs with Large Girth , 1998, Electron. J. Comb..

[10]  Arjeh M. Cohen,et al.  On Generalized Hexagons and a Near Octagon whose Lines have Three Points , 1985, Eur. J. Comb..

[11]  A. Barlotti,et al.  Combinatorics of Finite Geometries , 1975 .

[12]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  M. O’KEEFE,et al.  A smallest graph of girth 10 and valency 3 , 1980, J. Comb. Theory, Ser. B.

[14]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[15]  Juan José Montellano-Ballesteros,et al.  On upper bounds and connectivity of cages , 2007, Australas. J Comb..

[16]  Derek Allan Holton,et al.  The Petersen graph , 1993, Australian mathematical society lecture series.

[17]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[18]  E. Bannai,et al.  On finite Moore graphs , 1973 .

[19]  C. T. Benson Minimal Regular Graphs of Girths Eight and Twelve , 1966, Canadian Journal of Mathematics.

[20]  Dragan Marusic,et al.  The 10-cages and derived configurations , 2004, Discret. Math..

[21]  P. K. Wong A REGULAR GRAPH OF GIRTH 6 AND VALENCY 11 , 1986 .

[22]  Geoffrey Exoo A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15, and 16 , 1996, Electron. J. Comb..