The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative

In this paper, we construct exact solutions for the space–time nonlinear conformable fractional Bogoyavlenskii equations by using the first integral method, and with the help of Maple. As a result, generalized hyperbolic function solutions, generalized trigonometric function solutions and rational function solutions with free and deformation parameters are obtained. The method is very suitable, easy and effective handling of the solution process of nonlinear conformable fractional equations.

[1]  Hong-qing Zhang,et al.  New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the (2 + 1)-dimensional NNV equation , 2006 .

[2]  Won Sang Chung,et al.  Fractional Newton mechanics with conformable fractional derivative , 2015, J. Comput. Appl. Math..

[3]  R. Ansari,et al.  Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the $$\exp \left( { - \phi \left( \varepsilon \right)} \right)$$exp-ϕε-expansion method , 2017 .

[4]  P. Hartman Ordinary Differential Equations , 1965 .

[5]  Shaher Momani,et al.  The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics , 2009, Comput. Math. Appl..

[6]  M. Luo,et al.  General conformable fractional derivative and its physical interpretation , 2017, Calcolo.

[7]  M. Eslami An Efficient Method for Solving Fractional Partial Differential Equations , 2014 .

[8]  H. Aminikhah,et al.  Stability analysis of Hilfer fractional differential systems , 2015 .

[9]  Hossein Aminikhah,et al.  Approximate analytical solutions of distributed order fractional Riccati differential equation , 2016, Ain Shams Engineering Journal.

[10]  Andrew Pickering,et al.  Rational solutions for Schwarzian integrable hierarchies , 1998 .

[11]  Hossein Aminikhah,et al.  Analytical studies for linear periodic systems of fractional order , 2016 .

[12]  Ghazala Akram,et al.  New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity , 2017 .

[13]  M. Belić,et al.  Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives , 2016 .

[14]  Yücel Çenesiz,et al.  New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method , 2016 .

[15]  Yücel Çenesiz,et al.  Functional Variable Method for conformable fractional modified KdV-ZK equation and Maccari system , 2017 .

[16]  Xi-Qiang Liu,et al.  The secq–tanhq-method and its applications , 2002 .

[17]  Exact travelling wave Solutions for some nonlinear time fractional fifth-order Caudrey–Dodd–Gibbon equation by $$\varvec{\left( G^{\prime }/G\right) }$$G′/G-expansion method , 2016 .

[18]  Hadi Rezazadeh,et al.  Sub-equation Method for the Conformable Fractional Generalized Kuramoto-Sivashinsky Equation , 2016 .

[19]  M. Eslami,et al.  Explicit solutions of nonlinear (2 + 1)-dimensional dispersive long wave equation , 2012 .

[20]  Mohd. Salmi Md. Noorani,et al.  Homotopy analysis method for solving fractional Lorenz system , 2010 .

[21]  I. Hashim,et al.  HOMOTOPY ANALYSIS METHOD FOR FRACTIONAL IVPS , 2009 .

[22]  Aytac Arikoglu,et al.  Solution of fractional differential equations by using differential transform method , 2007 .

[23]  M. Kaplan,et al.  A simple technique for constructing exact solutions to nonlinear differential equations with conformable fractional derivative , 2017 .

[24]  I. Podlubny Fractional differential equations , 1998 .

[25]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[26]  R. Ansari,et al.  Bright and singular soliton solutions of the conformable time-fractional Klein–Gordon equations with different nonlinearities , 2018 .

[27]  S. Momani,et al.  Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order , 2006 .

[28]  Changpin Li,et al.  Numerical algorithm based on Adomian decomposition for fractional differential equations , 2009, Comput. Math. Appl..

[29]  R. Ansari,et al.  New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method , 2017 .

[30]  Hadi Rezazadeh,et al.  Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation , 2017 .

[31]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[32]  Hossein Aminikhah,et al.  Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives , 2016 .

[33]  Hadi Rezazadeh,et al.  The first integral method for Wu–Zhang system with conformable time-fractional derivative , 2016 .

[34]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[35]  R. Ansari,et al.  Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(-.PHI.(.EPSILON.))-expansion method , 2017 .

[36]  S. Momani,et al.  Application of generalized differential transform method to multi-order fractional differential equations , 2008 .

[37]  Hossein Aminikhah,et al.  Stability Analysis of Conformable Fractional Systems , 2017 .

[38]  Mostafa Eslami,et al.  Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations , 2016, Appl. Math. Comput..

[39]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[40]  R. Ansari,et al.  Modified Kudryashov method for solving the conformable time-fractional Klein–Gordon equations with quadratic and cubic nonlinearities , 2017 .