Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals

We investigate the structure and mobility of single self-interstitial atom and vacancy defects in body-centered-cubic transition metals forming groups 5B (vanadium, niobium, and tantalum) and 6B (chromium, molybdenum, and tungsten) of the Periodic Table. Density-functional calculations show that in all these metals the axially symmetric self-interstitial atom configuration has the lowest formation energy. In chromium, the difference between the energies of the and the self-interstitial configurations is very small, making the two structures almost degenerate. Local densities of states for the atoms forming the core of crowdion configurations exhibit systematic widening of the "local" d band and an upward shift of the antibonding peak. Using the information provided by electronic structure calculations, we derive a family of Finnis-Sinclair-type interatomic potentials for vanadium, niobium, tantalum, molybdenum, and tungsten. Using these potentials, we investigate the thermally activated migration of self-interstitial atom defects in tungsten. We rationalize the results of simulations using analytical solutions of the multistring Frenkel-Kontorova model describing nonlinear elastic interactions between a defect and phonon excitations. We find that the discreteness of the crystal lattice plays a dominant part in the picture of mobility of defects. We are also able to explain the origin of the non-Arrhenius diffusion of crowdions and to show that at elevated temperatures the diffusion coefficient varies linearly as a function of absolute temperature.

[1]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[2]  Stanislav I Golubov,et al.  One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper , 2003 .

[3]  Kovalev,et al.  Generalized Frenkel-Kontorova model for point lattice defects. , 1993, Physical review. B, Condensed matter.

[4]  J. Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[5]  A. Seeger,et al.  The Rôle of Radiation Damage in BCC Metals in the Point-Defect-Model Controversy , 1987 .

[6]  T. Noggle,et al.  Low‐Temperature Reactor Irradiation Effects in Metals , 1957 .

[7]  Andrew P. Horsfield,et al.  Systematic group-specific trends for point defects in bcc transition metals: An ab initio study , 2007 .

[8]  W. Frank,et al.  A Theory of Void Lattices , 1987 .

[9]  P. Gumbsch,et al.  Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals , 2004 .

[10]  F. Wette NOTE ON THE ELECTRON LATTICE , 1964 .

[11]  J. Heringa,et al.  Vacancy annealing in He and H2 irradiated Mo observed by thermal helium desorption spectrometry , 1993 .

[12]  O. Mogensen,et al.  A positron annihilation study of the annealing of electron irradiated molybdenum , 1976 .

[13]  H. Schultz Defect parameters of b.c.c. metals: group-specific trends , 1991 .

[14]  Andrew P. Horsfield,et al.  Self-interstitial atom defects in bcc transition metals: Group-specific trends , 2006 .

[15]  W. Frank Evidence for the existence of a metastable self-interstitial configuration in irradiated niobium , 1984 .

[16]  D. Nguyen-Manh,et al.  Modelling of crystalline C60 EEL spectra , 2006 .

[17]  John Waldron,et al.  The Langevin Equation , 2004 .

[18]  Frederick H. Streitz,et al.  Quantum-based atomistic simulation of materials properties in transition metals , 2002 .

[19]  G. Leibfried Über den Einfluß thermisch angeregter Schallwellen auf die plastische Deformation , 1950 .

[20]  D. Pettifor,et al.  Electronic origin of structural trends across early transition-metal disilicides: Anomalous behavior of CrSi 2 , 2004 .

[21]  Stanislav I Golubov,et al.  Stability and mobility of defect clusters and dislocation loops in metals , 2000 .

[22]  Mihai-Cosmin Marinica,et al.  Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations , 2005 .

[23]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[24]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[25]  A. Seeger Diffusion and Thermal Conversion of Crowdions , 1970 .

[26]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[27]  L. Hultman,et al.  Dynamics of self-interstitial structures in body-centred-cubic W studied by molecular dynamics simulation , 2000 .

[28]  S. Dudarev Thermal friction and Brownian motion of interstitial defects in irradiated materials , 2002 .

[29]  P. Ehrhart The configuration of atomic defects as determined from scattering studies , 1978 .

[30]  Y. Nazarenko,et al.  Crowdion dynamics in a nonuniformly deformed three-dimensional crystal , 2000 .

[31]  Giovanni Ciccotti,et al.  Book Review: Classical and Quantum Dynamics in Condensed Phase Simulations , 1998 .

[32]  D. Bacon,et al.  Mechanism of one-dimensional glide of self-interstitial atom clusters in α-iron , 2000 .

[33]  A. Cottrell,et al.  LXXXI. Annealing of point defects in metals and alloys , 1955 .

[34]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[35]  M. Guinan,et al.  Fully dynamic computer simulation of self-interstitial diffusion in tungsten , 1977 .

[36]  F. Dausinger,et al.  Long-Range Migration of Self-Interstitial Atoms in Tungsten , 1975 .

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  Stefano de Gironcoli,et al.  First-principles study of vacancy formation and migration energies in tantalum , 1999 .

[39]  R. Pasianot,et al.  Self-Interstitial Configuration in B.C.C. Metals. An Analysis Based on Many-Body Potentials for Fe and Mo , 2000 .

[40]  S. Dudarev,et al.  Coherent motion of interstitial defects in a crystalline material , 2003 .

[41]  V. Vítek,et al.  Environmental dependence of bonding: A challenge for modelling of intermetallics and fusion materials , 2007 .

[42]  D. Pettifor,et al.  Modeling In-Se amorphous alloys , 2005 .

[43]  J. M. Perlado,et al.  Mechanism of formation and growth of <100> interstitial loops in ferritic materials. , 2002, Physical review letters.

[44]  S. Dudarev Thermal mobility of interstitial defects in irradiated materials , 2002 .

[45]  Francois Willaime,et al.  Electronic structure calculations of vacancy parameters in transition metals: Impact on the bcc self-diffusion anomaly , 2000 .

[46]  A. Kosevich The crystal lattice , 1999 .

[47]  S. Dudarev Angular-dependent matrix potentials for fast molecular-dynamics simulations of transition metals , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  W. Frank,et al.  The interpretation of electron radiation damage in F.C.C. metals in terms of the conversion-two-interstitial model , 1969 .

[50]  Yuri S. Kivshar,et al.  Nonlinear dynamics of the Frenkel—Kontorova model , 1998 .

[51]  D. Maroudas,et al.  Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron , 2000 .

[52]  Moriarty,et al.  Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype. , 1996, Physical review. B, Condensed matter.

[53]  W. Schilling,et al.  Three‐Dimensional versus Crowdion Migration of Interstitials in Annealing Stage I of Irradiated Metals , 1970 .

[54]  S. Dudarev,et al.  Multi-scale modelling of defect behavior in bcc transition metals and iron alloys for future fusion power plants , 2006 .

[55]  C. Domain,et al.  Two-band modeling of α -prime phase formation in Fe-Cr , 2005 .

[56]  A. Seeger,et al.  DIFFUSION MECHANISMS AND POINT DEFECTS IN SILICON AND GERMANIUM. , 1968 .

[57]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[58]  Chu-Chun Fu,et al.  Stability and mobility of mono- and di-interstitials in alpha-Fe. , 2004, Physical review letters.

[59]  C. Woo,et al.  A theory of void-lattice formation , 1985 .

[60]  H. Schultz,et al.  Stage III recovery of electron-irradiated high-purity molybdenum , 1988 .

[61]  L. Hultman,et al.  Self-interstitial structures in body-centred-cubic W studied by molecular dynamics simulation , 1999 .

[62]  A. Willoughby Atomic diffusion in semiconductors , 1978 .

[63]  N. Soneda,et al.  Migration kinetics of the self-interstitial atom and its clusters in bcc Fe , 2001 .

[64]  Peter M. Derlet,et al.  Million-atom molecular dynamics simulations of magnetic iron , 2007 .

[65]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[66]  S. M. Lee,et al.  Electron energy loss spectra of C60 and C70 fullerenes , 2005 .

[67]  C. Woo,et al.  LIMITED GROWTH, DISPLACIVE STABILITY AND SIZE UNIFORMITY OF VOIDS IN A VOID LATTICE , 1986 .

[68]  Hideaki Fujitani,et al.  Transferable atomic-type orbital basis sets for solids , 2000 .

[69]  Stefano de Gironcoli,et al.  Vacancy self-diffusion parameters in tungsten: Finite electron-temperature LDA calculations , 1998 .

[70]  Brian D. Wirth,et al.  Self-interstitial transport in vanadium , 2005 .

[71]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[72]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[73]  D. Maroudas,et al.  Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron , 1997 .

[74]  A. Sutton Temperature-dependent interatomic forces , 1989 .

[75]  J. M. Perlado,et al.  Dynamics of self-interstitial cluster migration in pure α-Fe and Fe-Cu alloys , 2002 .

[76]  H. Mori,et al.  Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations. , 2006, Physical review letters.

[77]  C. Domain,et al.  Ab initio calculations of defects in Fe and dilute Fe-Cu alloys , 2001 .

[78]  Toby S. Hudson,et al.  Confinement of interstitial cluster diffusion by oversized solute atoms , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[79]  Martin T. Dove,et al.  Structure and dynamics : an atomic view of materials , 2003 .

[80]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[81]  Roberto Car,et al.  Strongly Non-Arrhenius Self-Interstitial Diffusion in Vanadium , 2004 .

[82]  Heinz R. Paneth The Mechanism of Self-Diffusion in Alkali Metals , 1950 .

[83]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[84]  Graeme Ackland,et al.  Self-interstitials in V and Mo , 2002 .

[85]  L. Tewordt Distortion of the Lattice around an Interstitial, a Crowdion, and a Vacancy in Copper , 1958 .

[86]  N. Soneda,et al.  Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation , 1998 .

[87]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[88]  R. Mazo,et al.  Brownian Motion: Fluctuations, Dynamics, and Applications , 2002 .

[89]  Peter M. Derlet,et al.  A ‘magnetic’ interatomic potential for molecular dynamics simulations , 2005 .

[90]  Zhang Bangwei,et al.  An analytic MEAM model for all BCC transition metals , 1999 .

[91]  Roberto Car,et al.  Microscopic theory of atomic diffusion mechanisms in silicon , 1984 .

[92]  Duc Nguyen-Manh,et al.  Multi-scale modelling of materials for fusion power plants , 2006 .

[93]  G. Ackland,et al.  Validity of the second moment tight-binding model , 1988 .