Discontinuous Galerkin methods for Friedrichs systems with irregular solutions

This work is concerned with the numerical solution of Friedrichs systems by discontinuous Galerkin “nite element methods (DGFEMs). Friedrichs systems are boundary value problems with symmetric, positive, linear “rst-order partial differential operators and allow the uni“ed treatment of a wide range of elliptic, parabolic, hyperbolic and mixed-type equations. We do not assume that the exact solution of a Friedrichs system belongs to a Sobolev space, but only require that it is contained in the associated graph space, which amounts to differentiability in the characteristic direction. We show that the numerical approximations to the solution of a Friedrichs system by the DGFEM converge in the energy norm under hierarchicalh- and p- re“nement. We introduce a new compatibility condition for the boundary data, from which we can deduce, for instance, the validity of the integration-by-parts formula. Consequently, we can admit domains with corners and allow changes of the inertial type of the boundary, which corresponds in special cases to the componentwise transition from in- to out”ow boundaries. To establish the convergence result we consider in equal parts the theory of graph spaces, Friedrichs systems and DGFEMs. Based on the density of smooth functions in graph spaces over Lipschitz domains, we study trace and extension operators and also investigate the eigensystem associated with the differential operator. We pay particular attention to regularity properties of the traces, that limit the applicability of energy integral methods, which are the theoretical underpinning of Friedrichs systems. We provide a general framework for Friedrichs systems which incorporates a wide range of singular boundary conditions. Assuming the aforementioned compatibility condition we deduce well-posedness of admissible Friedrichs systems and the stability of the DGFEM. In a separate study we prove hp-optimality of least-squares stabilised DGFEMs.

[1]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[2]  R. Moyer On the nonidentity of weak and strong extensions of differential operators , 1968 .

[3]  P. Lesaint,et al.  Finite element methods for symmetric hyperbolic equations , 1973 .

[4]  A. Buffa,et al.  On traces for H(curl,Ω) in Lipschitz domains , 2002 .

[5]  Richard S. Falk,et al.  Explicit Finite Element Methods for Linear Hyperbolic Systems , 2000 .

[6]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[7]  John Sylvester,et al.  The Dirichlet to Neumann map and applications , 1989 .

[8]  Peter D. Lax,et al.  On cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations , 1955 .

[9]  Paolo Secchi,et al.  The initial-boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity , 1996, Differential and Integral Equations.

[10]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[11]  Joseph J. Kohn,et al.  Non‐coercive boundary value problems , 1965 .

[12]  Paul C. Fife,et al.  Second-Order Equations With Nonnegative Characteristic Form , 1973 .

[13]  E. Süli,et al.  Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .

[14]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  Endre Süli,et al.  Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .

[17]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[18]  L. E. Fraenkel,et al.  On Regularity of the Boundary in the Theory of Sobolev Spaces , 1979 .

[19]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[20]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[21]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[22]  Tosio Kato Perturbation theory for linear operators , 1966 .

[23]  C. Cosner,et al.  Systems of second order equations with nonnegative characteristic form , 1979 .

[24]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[25]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[26]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[27]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[28]  L. Sarason On weak and strong solutions of boundary value problems , 1962 .

[29]  F. Rellich Störungstheorie der Spektralzerlegung , 1939 .

[30]  Todd E. Peterson,et al.  A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .

[31]  C. Morawetz Lectures on nonlinear waves and shocks , 1981 .

[32]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[33]  Endre Süli,et al.  hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization , 2002, J. Sci. Comput..

[34]  Joseph J. Kohn,et al.  Degenerate elliptic-parabolic equations of second order , 1967 .

[35]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[36]  Endre Süli,et al.  DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .

[37]  Kurt Friedrichs,et al.  Boundary value problems for first order operators , 1965 .

[38]  R. Phillips,et al.  Local boundary conditions for dissipative symmetric linear differential operators , 1960 .

[39]  C. Bardos Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .

[40]  Juhani Pitkäranta,et al.  CONVERGENCE OF A FULLY DISCRETE SCHEME FOR TWO-DIMENSIONAL NEUTRON TRANSPORT* , 1983 .

[41]  Gideon Peyser,et al.  Symmetric positive systems in corner domains , 1975 .

[42]  H. Fédérer Geometric Measure Theory , 1969 .

[43]  Jeffrey Rauch,et al.  Symmetric positive systems with boundary characteristic of constant multiplicity , 1985 .

[44]  Qun Lin,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN METHOD FOR A SCALAR HYPERBOLIC EQUATION , 1993 .

[45]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[46]  S. Osher An ill posed problem for a hyperbolic equation near a corner , 1973 .

[47]  C. Morawetz A weak solution for a system of equations of elliptic-hyperbolic type† , 1958 .

[48]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[49]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[50]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[51]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[52]  C. Bardos,et al.  Maximal positive boundary value problems as limits of singular perturbation problems , 1982 .

[53]  Jean-Paul Vila,et al.  Convergence de la méthode des volumes finis pour les systèmes de Friedrichs , 1997 .

[54]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[55]  K. Friedrichs On the Differentiability of Solutions of Accretive Linear Differential Equations , 1974 .