Discontinuous Galerkin methods for Friedrichs systems with irregular solutions
暂无分享,去创建一个
[1] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[2] R. Moyer. On the nonidentity of weak and strong extensions of differential operators , 1968 .
[3] P. Lesaint,et al. Finite element methods for symmetric hyperbolic equations , 1973 .
[4] A. Buffa,et al. On traces for H(curl,Ω) in Lipschitz domains , 2002 .
[5] Richard S. Falk,et al. Explicit Finite Element Methods for Linear Hyperbolic Systems , 2000 .
[6] Bernardo Cockburn,et al. Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .
[7] John Sylvester,et al. The Dirichlet to Neumann map and applications , 1989 .
[8] Peter D. Lax,et al. On cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations , 1955 .
[9] Paolo Secchi,et al. The initial-boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity , 1996, Differential and Integral Equations.
[10] J. Oden,et al. hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .
[11] Joseph J. Kohn,et al. Non‐coercive boundary value problems , 1965 .
[12] Paul C. Fife,et al. Second-Order Equations With Nonnegative Characteristic Form , 1973 .
[13] E. Süli,et al. Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .
[14] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[15] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[16] Endre Süli,et al. Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .
[17] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[18] L. E. Fraenkel,et al. On Regularity of the Boundary in the Theory of Sobolev Spaces , 1979 .
[19] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[20] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[21] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[22] Tosio Kato. Perturbation theory for linear operators , 1966 .
[23] C. Cosner,et al. Systems of second order equations with nonnegative characteristic form , 1979 .
[24] Kurt Friedrichs,et al. Symmetric positive linear differential equations , 1958 .
[25] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[26] PAUL HOUSTON,et al. Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..
[27] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[28] L. Sarason. On weak and strong solutions of boundary value problems , 1962 .
[29] F. Rellich. Störungstheorie der Spektralzerlegung , 1939 .
[30] Todd E. Peterson,et al. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .
[31] C. Morawetz. Lectures on nonlinear waves and shocks , 1981 .
[32] Jaak Peetre,et al. Function spaces on subsets of Rn , 1984 .
[33] Endre Süli,et al. hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization , 2002, J. Sci. Comput..
[34] Joseph J. Kohn,et al. Degenerate elliptic-parabolic equations of second order , 1967 .
[35] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[36] Endre Süli,et al. DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .
[37] Kurt Friedrichs,et al. Boundary value problems for first order operators , 1965 .
[38] R. Phillips,et al. Local boundary conditions for dissipative symmetric linear differential operators , 1960 .
[39] C. Bardos. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .
[40] Juhani Pitkäranta,et al. CONVERGENCE OF A FULLY DISCRETE SCHEME FOR TWO-DIMENSIONAL NEUTRON TRANSPORT* , 1983 .
[41] Gideon Peyser,et al. Symmetric positive systems in corner domains , 1975 .
[42] H. Fédérer. Geometric Measure Theory , 1969 .
[43] Jeffrey Rauch,et al. Symmetric positive systems with boundary characteristic of constant multiplicity , 1985 .
[44] Qun Lin,et al. CONVERGENCE OF THE DISCONTINUOUS GALERKIN METHOD FOR A SCALAR HYPERBOLIC EQUATION , 1993 .
[45] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[46] S. Osher. An ill posed problem for a hyperbolic equation near a corner , 1973 .
[47] C. Morawetz. A weak solution for a system of equations of elliptic-hyperbolic type† , 1958 .
[48] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[49] George Em Karniadakis,et al. The Development of Discontinuous Galerkin Methods , 2000 .
[50] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[51] K. Friedrichs. Symmetric hyperbolic linear differential equations , 1954 .
[52] C. Bardos,et al. Maximal positive boundary value problems as limits of singular perturbation problems , 1982 .
[53] Jean-Paul Vila,et al. Convergence de la méthode des volumes finis pour les systèmes de Friedrichs , 1997 .
[54] G. Richter. An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .
[55] K. Friedrichs. On the Differentiability of Solutions of Accretive Linear Differential Equations , 1974 .