Experimental progress on layered topological semimetals

We review recent experimental progresses on layered topological materials, mainly focusing on transitional metal dichalcogenides with various lattice types including 1T, Td and 1T′ structural phases. Their electronic quantum states are interestingly rich, and many appear to be topological nontrivial, such as Dirac/Weyl semimetallic phase in multilayers and quantum spin hall insulator phase in monolayers. The content covers recent major advances from material synthesis, basic characterizations, angle-resolved photoemission spectroscopy measurements, transport and optical responses. Following those, we outlook the exciting future possibilities enabled by the marriage of topological physics and two dimensional van der Waals layered heterostructures.

[1]  S. Chakraverty,et al.  Type-II Dirac semimetal candidates ATe2 ( A= Pt, Pd): A de Haas-van Alphen study , 2018, Physical Review Materials.

[2]  Wenjin Zhao,et al.  Gate-induced superconductivity in a monolayer topological insulator , 2018, Science.

[3]  Kenji Watanabe,et al.  Electrically tunable low-density superconductivity in a monolayer topological insulator , 2018, Science.

[4]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[5]  Z. Liao,et al.  Dirac Semimetal Heterostructures: 3D Cd3As2 on 2D Graphene , 2018, Advanced materials.

[6]  W. Lu,et al.  Terahertz probe of photoexcited carrier dynamics in the Dirac semimetal Cd3As2 , 2018, Physical Review B.

[7]  Jian‐Hao Chen,et al.  Berry Curvature Enhanced Nonlinear Photogalvanic Response of Type-II Weyl Cone , 2018, 1806.08508.

[8]  Sung Wng Kim,et al.  Superconductivity in Te-deficient polymorphic MoTe2−x and its derivatives: rich structural and electronic phase transitions , 2018, 2D Materials.

[9]  D. Geohegan,et al.  In situ edge engineering in two-dimensional transition metal dichalcogenides , 2018, Nature Communications.

[10]  X. Duan,et al.  Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe2 Single Crystals and Their Thickness-Dependent Electronic Properties. , 2018, Nano letters.

[11]  Wei-xiao Ji,et al.  Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap. , 2018, Physical chemistry chemical physics : PCCP.

[12]  D. Smirnov,et al.  Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers , 2018, Nature Communications.

[13]  Jian‐Hao Chen,et al.  Anisotropic Broadband Photoresponse of Layered Type‐II Weyl Semimetal MoTe2 , 2018, Advanced materials.

[14]  L. Balicas,et al.  Detailed study of the Fermi surfaces of the type-II Dirac semimetallic candidates X Te 2 ( X =Pd, Pt) , 2018, 1805.00087.

[15]  Chunhui Zhu,et al.  Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films , 2018 .

[16]  Z. Mi,et al.  Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2 , 2018, Scientific Reports.

[17]  W. Lu,et al.  Broadband Anisotropic Photoresponse of the "Hydrogen Atom" Version Type-II Weyl Semimetal Candidate TaIrTe4. , 2018, ACS nano.

[18]  N. Zhang,et al.  Raman Signatures of Broken Inversion Symmetry and In‐Plane Anisotropy in Type‐II Weyl Semimetal Candidate TaIrTe4 , 2018, Advanced materials.

[19]  Tay-Rong Chang,et al.  Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2 , 2018, npj Quantum Materials.

[20]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[21]  Fengqiu Wang,et al.  Three-dimensional Dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared. , 2018, Optics letters.

[22]  Chao Xie,et al.  Fast, Self‐Driven, Air‐Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction , 2018 .

[23]  Q. Gibson,et al.  Dynamics of out-of-equilibrium electron and hole pockets in the type-II Weyl semimetal candidate WTe2 , 2017, 1711.05002.

[24]  Kenji Watanabe,et al.  Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2 , 2018, Nature Physics.

[25]  A. Kis,et al.  Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide , 2018, Nature Communications.

[26]  C. Felser,et al.  Photogalvanic effect in Weyl semimetals from first principles , 2018, Physical Review B.

[27]  Xing Wu,et al.  Raman spectroscopy characterization of two-dimensional materials , 2018 .

[28]  T. Iitaka,et al.  Second harmonic generation in the Weyl semimetal TaAs from a quantum kinetic equation , 2018 .

[29]  C. Kane,et al.  Spatially dispersive circular photogalvanic effect in a Weyl semimetal , 2018, Nature Materials.

[30]  R. Cava,et al.  Experimental Tests of the Chiral Anomaly Magnetoresistance in the Dirac-Weyl Semimetals Na3Bi and GdPtBi , 2018, Physical Review X.

[31]  Chaofan Zhang,et al.  Electronic structure of monolayer 1T′-MoTe2 grown by molecular beam epitaxy , 2018 .

[32]  J. Carbotte,et al.  Doping and tilting on optics in noncentrosymmetric multi-Weyl semimetals , 2018, 1803.06280.

[33]  Haixin Chang,et al.  Enhanced Electrocatalytic Hydrogen Evolution from Large-Scale, Facile-Prepared, Highly Crystalline WTe2 Nanoribbons with Weyl Semimetallic Phase. , 2018, ACS applied materials & interfaces.

[34]  Zijing Ding,et al.  Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. , 2018, Nano letters.

[35]  Hyun Ho Kim,et al.  Dimensionality-driven orthorhombic MoTe 2 at room temperature , 2018, 1801.01217.

[36]  Ying Ran,et al.  Divergent bulk photovoltaic effect in Weyl semimetals , 2017, 1712.09363.

[37]  S. Cheong,et al.  Temperature-driven topological transition in 1T'-MoTe2 , 2017, 1712.06712.

[38]  H. Alshareef,et al.  Evidence for topological type-II Weyl semimetal WTe2 , 2017, Nature Communications.

[39]  Amit,et al.  Conventional superconductivity in the type-II Dirac semimetal PdTe 2 , 2017, 1712.03749.

[40]  C. Hinkle,et al.  van der Waals epitaxy: 2D materials and topological insulators , 2017 .

[41]  Wenxu Zhang,et al.  The mechanism of layer number and strain dependent bandgap of 2D crystal PtSe2 , 2017 .

[42]  Kenji Watanabe,et al.  Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal , 2017, Science.

[43]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[44]  N. Takagi,et al.  Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference. , 2017, ACS nano.

[45]  Su-Yang Xu,et al.  Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points , 2017, Nature Communications.

[46]  Y. Huang,et al.  Type I superconductivity in the Dirac semimetal PdTe2 , 2017, 1710.03862.

[47]  Albert V. Davydov,et al.  The structural phases and vibrational properties of Mo1−xWxTe2 alloys , 2017, 2d materials.

[48]  Rong Zhang,et al.  Broadband hot-carrier dynamics in three-dimensional Dirac semimetal Cd3As2 , 2017 .

[49]  Chiara Musumeci Advanced Scanning Probe Microscopy of Graphene and Other 2D Materials , 2017 .

[50]  Hua Zhang,et al.  Controllable Synthesis of Atomically Thin Type‐II Weyl Semimetal WTe2 Nanosheets: An Advanced Electrode Material for All‐Solid‐State Flexible Supercapacitors , 2017, Advanced materials.

[51]  Q. Gibson,et al.  Anisotropic electrodynamics of type-II Weyl semimetal candidate WTe 2 , 2017 .

[52]  J. Carbotte,et al.  Optical response in Weyl semimetal in model with gapped Dirac phase , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  Yi Xie,et al.  Very Large-Sized Transition Metal Dichalcogenides Monolayers from Fast Exfoliation by Manual Shaking. , 2017, Journal of the American Chemical Society.

[54]  M. Dresselhaus,et al.  Sensitive Phonon-Based Probe for Structure Identification of 1T' MoTe2. , 2017, Journal of the American Chemical Society.

[55]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[56]  Haijun Zhang,et al.  Revealing Fermi arcs and Weyl nodes in MoTe 2 by quasiparticle interference mapping , 2017 .

[57]  Sung Wng Kim,et al.  Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride , 2017 .

[58]  P. Bugnon,et al.  Universal scattering response across the type-II Weyl semimetal phase diagram , 2017, 1706.00456.

[59]  S. Cheong,et al.  Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2 , 2017, 1705.11189.

[60]  C. Felser,et al.  Optical signature of Weyl electronic structures in tantalum pnictides TaPn (Pn = P, As) , 2017, 1705.08774.

[61]  D. Sarma,et al.  MoTe2: An uncompensated semimetal with extremely large magnetoresistance , 2017, 1705.07217.

[62]  L. Dai,et al.  Anomalous in-plane anisotropic Raman response of monoclinic semimetal 1 T´-MoTe2 , 2017, Scientific Reports.

[63]  Dapeng Yu,et al.  Quantum transport in Dirac and Weyl semimetals: a review , 2017 .

[64]  Justin C. W. Song,et al.  Large optical conductivity of Dirac semimetal Fermi arc surface states , 2017, 1705.01566.

[65]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[66]  Moon J. Kim,et al.  MBE growth of few-layer 2H-MoTe 2 on 3D substrates , 2017, 1705.00651.

[67]  P. Jarillo-Herrero,et al.  Direct optical detection of Weyl fermion chirality in a topological semimetal , 2017, Nature Physics.

[68]  K. T. Law,et al.  Is 1T-TaS$_2$ a 40 year old quantum spin liquid? , 2017, 1704.06157.

[69]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[70]  Albert V. Davydov,et al.  Evolution of Raman spectra in Mo 1 − x W x Te 2 alloys , 2017 .

[71]  Claudia Felser,et al.  Weyl Semimetals as Hydrogen Evolution Catalysts , 2017, Advanced materials.

[72]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[73]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[74]  Ying-Shuang Fu,et al.  Observation of topological states residing at step edges of WTe2 , 2017, Nature Communications.

[75]  Kang L. Wang,et al.  Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals , 2017, Scientific Reports.

[76]  Zhe Sun,et al.  Experimental evidence for type-II Dirac semimetal in PtSe 2 , 2017, 1703.04242.

[77]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[78]  C. Felser,et al.  Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2 , 2017, Nature Communications.

[79]  W. Duan,et al.  High quality atomically thin PtSe2 films grown by molecular beam epitaxy , 2017, 1703.04279.

[80]  P. Lu,et al.  Direct visualization of a two-dimensional topological insulator in the single-layer 1 T ' -WT e 2 , 2017, 1703.04042.

[81]  Yulin Chen,et al.  Quantum spin Hall state in monolayer 1T'-WTe2 , 2017, Nature Physics.

[82]  Xin Luo,et al.  Determination of Crystal Axes in Semimetallic T′‐MoTe2 by Polarized Raman Spectroscopy , 2017 .

[83]  Timur K. Kim,et al.  Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides. , 2017, Nature materials.

[84]  R. Cava,et al.  Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe_{2}. , 2017, Physical review letters.

[85]  Yeliang Wang,et al.  Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film , 2017, Nature Communications.

[86]  Q. Gibson,et al.  Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi 2 , 2017, 1701.08693.

[87]  Kenji Watanabe,et al.  Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe 2 , 2017, 1701.08839.

[88]  Zhaojie Wang,et al.  Synthesis of few-layer 1T′-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors , 2017 .

[89]  Nan Wang,et al.  Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5 , 2017, Proceedings of the National Academy of Sciences.

[90]  Yuanfu Chen,et al.  Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution , 2017 .

[91]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[92]  Zu-Yan Xu,et al.  Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .

[93]  Y. Sun,et al.  Extremely large magnetoresistance in the type-II Weyl semimetal Mo Te 2 , 2016, 1706.03356.

[94]  B. Min,et al.  Experimental Realization of Type-II Dirac Fermions in a PdTe_{2} Superconductor. , 2016, Physical review letters.

[95]  Jian Sun,et al.  Origin of superconductivity in the Weyl semimetal WT e 2 under pressure , 2016 .

[96]  Su-Yang Xu,et al.  Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface. , 2016, Physical Review Letters.

[97]  F. Jin,et al.  Raman scattering in the transition-metal dichalcogenides of 1 T ′ − MoT e 2 , T d − MoT e 2 , and T d − WT e 2 , 2016 .

[98]  Guanghou Wang,et al.  Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2 , 2016, Nature Communications.

[99]  Qiang Li,et al.  Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics , 2016, Advanced materials.

[100]  Guanghou Wang,et al.  Nontrivial Berry phase and type-II Dirac transport in the layered material PdT e 2 , 2016, 1611.08112.

[101]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[102]  K. Ishizaka,et al.  Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoT e 2 , 2016, 1611.02168.

[103]  M. Delplancke-Ogletree,et al.  Growth and characterization of WSe2 single crystals usingTeCl4 as transport agent , 2016 .

[104]  Qingsheng Zeng,et al.  Controlled Synthesis of Atomically Thin 1T-TaS2 for Tunable Charge Density Wave Phase Transitions , 2016 .

[105]  Zaiyao Fei,et al.  Edge conduction in monolayer WTe2 , 2016, Nature Physics.

[106]  Su-Yang Xu,et al.  Weyl semimetals, Fermi arcs and chiral anomalies. , 2016, Nature materials.

[107]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[108]  Pinshane Y. Huang,et al.  Engineering the Structural and Electronic Phases of MoTe2 through W Substitution. , 2016, Nano letters.

[109]  J. Carbotte,et al.  Dirac cone tilt on interband optical background of type-I and type-II Weyl semimetals , 2016 .

[110]  Timur K. Kim,et al.  Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe 4 , 2016, 1609.09549.

[111]  J. Orenstein,et al.  Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals , 2016, 1609.05932.

[112]  J. E. Moore,et al.  Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.

[113]  W. Lu,et al.  Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3AS2 , 2016, 2018 Conference on Lasers and Electro-Optics (CLEO).

[114]  W. Lu,et al.  Ultrafast Relaxation Dynamics of Photoexcited Dirac Fermion in The Three Dimensional Dirac Semimetal Cadmium Arsenide , 2016, 1608.07361.

[115]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[116]  Jun Yan,et al.  Activation of New Raman Modes by Inversion Symmetry Breaking in Type II Weyl Semimetal Candidate T'-MoTe2. , 2016, Nano letters.

[117]  Yan-Feng Chen,et al.  Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.

[118]  F. Miao,et al.  Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2 , 2016, Nature Communications.

[119]  Guanghou Wang,et al.  Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate Mo x W 1 − x Te 2 , 2016 .

[120]  Masatoshi Sato,et al.  Topological superconductors: a review , 2016, Reports on progress in physics. Physical Society.

[121]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[122]  W. Duan,et al.  Type-II Dirac fermions in the PtSe 2 class of transition metal dichalcogenides , 2016, 1607.07965.

[123]  G. Refael,et al.  Photocurrents in Weyl semimetals , 2016, 1607.07839.

[124]  W. Duan,et al.  Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2 , 2016, Nature Communications.

[125]  L. Balicas,et al.  Hall effect within the colossal magnetoresistive semimetallic state of MoTe 2 , 2016, 1607.03330.

[126]  Qingsheng Zeng,et al.  Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films , 2016, Science Advances.

[127]  Conor P. Cullen,et al.  High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature. , 2016, ACS nano.

[128]  Ji Feng,et al.  Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 , 2016, Nature Communications.

[129]  Peng Yu,et al.  Large‐Area and High‐Quality 2D Transition Metal Telluride , 2016, Advanced materials.

[130]  Su-Yang Xu,et al.  A strongly robust type II Weyl fermion semimetal state in Ta3S2 , 2016, Science Advances.

[131]  M. Chou,et al.  Spin texture in type-II Weyl semimetal WTe 2 , 2016, 1606.00085.

[132]  Madan Dubey,et al.  Gold‐Mediated Exfoliation of Ultralarge Optoelectronically‐Perfect Monolayers , 2016, Advanced materials.

[133]  L. Balicas,et al.  Bulk Fermi surface of the Weyl type-II semimetallic candidate NbIrTe 4 , 2016, 1605.09065.

[134]  Ji Feng,et al.  On the Quantum Spin Hall Gap of Monolayer 1T′‐WTe2 , 2016, Advanced materials.

[135]  Xiaofeng Qian,et al.  van der Waals Stacking-Induced Topological Phase Transition in Layered Ternary Transition Metal Chalcogenides. , 2016, Nano letters.

[136]  M. Goerbig,et al.  Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals. , 2016, Physical review letters.

[137]  Huiwen Ji,et al.  Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal , 2016, 1604.08745.

[138]  E. Bergholtz,et al.  Field-Selective Anomaly and Chiral Mode Reversal in Type-II Weyl Materials. , 2016, Physical review letters.

[139]  Wei Shi,et al.  Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2 , 2016 .

[140]  Timur K. Kim,et al.  Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe 2 , 2016, 1604.08228.

[141]  P. Canfield,et al.  Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.

[142]  Yugui Yao,et al.  Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals. , 2016, Physical review letters.

[143]  Lin Zhao,et al.  Spectroscopic Evidence of Type II Weyl Semimetal State in WTe2 , 2016, 1604.04218.

[144]  Z. J. Wang,et al.  Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2 , 2016, 1604.02116.

[145]  Lin Zhao,et al.  Electronic Evidence for Type II Weyl Semimetal State in MoTe2 , 2016, 1604.01706.

[146]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[147]  Moon J. Kim,et al.  Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy , 2016 .

[148]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[149]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[150]  H. Xiao,et al.  Optical spectroscopy of the Weyl semimetal TaAs , 2016 .

[151]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[152]  J. Brink,et al.  TaIrTe4: A ternary type-II Weyl semimetal , 2016, 1603.04323.

[153]  Rong Zhang,et al.  A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions , 2016, Nature Communications.

[154]  J. Carbotte,et al.  Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition , 2016, 1603.03722.

[155]  R. Cava,et al.  Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2 , 2016, Nature Communications.

[156]  A. Hirata,et al.  Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps , 2016, Scientific Reports.

[157]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[158]  Young In Jhon,et al.  Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. , 2016, Nanoscale.

[159]  M. Dressel,et al.  Interband optical conductivity of the [001]-oriented Dirac semimetal Cd 3 As 2 , 2016, 1601.03299.

[160]  S. Fujimoto,et al.  Majorana Fermions and Topology in Superconductors , 2016, 1601.02726.

[161]  David-Wei Zhang,et al.  Direct Observation of Landau Level Resonance and Mass Generation in Dirac Semimetal Cd3As2 Thin Films. , 2016, Nano letters.

[162]  J. Tersoff,et al.  Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction , 2015, Nature Communications.

[163]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[164]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[165]  Robert Vajtai,et al.  Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. , 2015, ACS nano.

[166]  T. Morimoto,et al.  Topological nature of nonlinear optical effects in solids , 2015, Science Advances.

[167]  J. Sinova,et al.  Spin Hall effects , 2015 .

[168]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[169]  T. Morimoto,et al.  Scaling laws for nonlinear electromagnetic responses of Dirac fermion , 2015, 1510.02185.

[170]  M. Norman Vector Optical Activity in the Weyl Semimetal TaAs , 2015, 1510.01802.

[171]  Qingsheng Zeng,et al.  Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. , 2015, Nano letters.

[172]  Jiansheng Wu,et al.  A spin filter transistor made of topological Weyl semimetal , 2015 .

[173]  Z. Liao,et al.  Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts. , 2015, ACS nano.

[174]  C. Felser,et al.  Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[175]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[176]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[177]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[178]  S. Sarma,et al.  Optical evidence for a Weyl semimetal state in pyrochlore Eu 2 Ir 2 O 7 , 2015, 1507.01038.

[179]  G. Gu,et al.  Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5). , 2015, Physical review letters.

[180]  Yeliang Wang,et al.  Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. , 2015, Nano letters.

[181]  Jianzhou Zhao,et al.  Electronic Structure of Transition Metal Dichalcogenides PdTe2 and Cu0.05PdTe2 Superconductors Obtained by Angle-Resolved Photoemission Spectroscopy , 2015, 1505.06641.

[182]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[183]  G. Gu,et al.  Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5 , 2015, 1505.00307.

[184]  Cheng Zhang,et al.  Room-temperature chiral charge pumping in Dirac semimetals , 2015, Nature Communications.

[185]  J. Ning,et al.  Photoluminescence and Raman mapping characterization of WS2 monolayers prepared using top-down and bottom-up methods , 2015 .

[186]  Timur K. Kim,et al.  Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe2. , 2015, Physical review letters.

[187]  Su-Yang Xu,et al.  Lifshitz transition and Van Hove singularity in a three-dimensional topological Dirac semimetal , 2015, 1502.06917.

[188]  S. Ishiwata,et al.  Rich structural phase diagram and thermoelectric properties of layered tellurides Mo1-xNbxTe2 , 2015, 1502.05634.

[189]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[190]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[191]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[192]  Zhongxian Zhao,et al.  Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride , 2015, Nature Communications.

[193]  Guanghou Wang,et al.  Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.

[194]  Chendong Zhang,et al.  Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. , 2014, Nano letters.

[195]  M. Pumera,et al.  Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. , 2014, ACS nano.

[196]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[197]  S. Hussain,et al.  Hydrothermal synthesis of variety low dimensional WS2 nanostructures , 2014 .

[198]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[199]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[200]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[201]  J. Carbotte,et al.  Chiral anomaly and optical absorption in Weyl semimetals , 2014, 1405.7034.

[202]  Jing Tao,et al.  Titanic Magnetoresistance in WTe2 , 2014, 1405.0973.

[203]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[204]  S. Basak,et al.  Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films , 2014, Nature Communications.

[205]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[206]  S. Pantelides,et al.  Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. , 2014, Nano letters.

[207]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[208]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[209]  Huiwen Ji,et al.  One-dimensional topological edge states of bismuth bilayers , 2014, Nature Physics.

[210]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[211]  Cheng-Cheng Liu,et al.  Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl, and Br) monolayers with a record bulk band gap , 2014, 1402.2399.

[212]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[213]  E. Giannini,et al.  Improved chemical vapor transport growth of transition metal dichalcogenides , 2014, 1401.5621.

[214]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[215]  X. Qi,et al.  Tunable circular dichroism due to the chiral anomaly in Weyl semimetals , 2014, 1401.2762.

[216]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[217]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[218]  Hua Zhang,et al.  Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. , 2013, ACS nano.

[219]  P. Ajayan,et al.  Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride , 2013, Nature Communications.

[220]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[221]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[222]  X. Dai,et al.  Transition-Metal Pentatelluride ZrTe 5 and HfTe 5 : A Paradigm for Large-Gap Quantum Spin Hall Insulators , 2013, 1309.7529.

[223]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[224]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[225]  D. Basov,et al.  Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity , 2013, 1306.4565.

[226]  Binghai Yan,et al.  Large-gap quantum spin Hall insulators in tin films. , 2013, Physical review letters.

[227]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[228]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[229]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[230]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[231]  M. Delplancke-Ogletree,et al.  Growth and characterization of large, high quality MoSe2 single crystals , 2013 .

[232]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[233]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[234]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[235]  A. Centeno,et al.  Photoexcitation cascade and multiple hot-carrier generation in graphene , 2012, Nature Physics.

[236]  K. Novoselov,et al.  Ultrafast collinear scattering and carrier multiplication in graphene , 2012, Nature Communications.

[237]  L. Balents,et al.  Weyl superconductors , 2012, 1205.5202.

[238]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[239]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[240]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[241]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[242]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[243]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[244]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[245]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[246]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[247]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[248]  Cheng-Cheng Liu,et al.  Quantum spin Hall effect in silicene and two-dimensional germanium. , 2011, Physical review letters.

[249]  Pablo Jarillo-Herrero,et al.  STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride , 2011, 1102.2642.

[250]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[251]  A. Knorr,et al.  Carrier multiplication in graphene. , 2010, Nano letters.

[252]  A. Vishwanath,et al.  Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2010, 1007.0016.

[253]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[254]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[255]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[256]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[257]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[258]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[259]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[260]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[261]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[262]  Bei Wang,et al.  FACILE SYNTHESIS AND CHARACTERIZATION OF GRAPHENE NANOSHEETS , 2008 .

[263]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[264]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[265]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[266]  S. Murakami,et al.  Tuning phase transition between quantum spin Hall and ordinary insulating phases , 2007, 0705.3696.

[267]  Guohong Li,et al.  Observation of Landau levels of Dirac fermions in graphite , 2007, 0705.1185.

[268]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[269]  P. Kim,et al.  Infrared spectroscopy of Landau levels of graphene. , 2007, Physical review letters.

[270]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[271]  T. Devereaux,et al.  Inelastic light scattering from correlated electrons , 2006, cond-mat/0607554.

[272]  Shuichi Murakami,et al.  Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. , 2006, Physical review letters.

[273]  C. Berger,et al.  Landau level spectroscopy of ultrathin graphite layers. , 2006, Physical review letters.

[274]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[275]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[276]  Weichao Yu,et al.  Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2 , 2001 .

[277]  G. Vacquier,et al.  Chemical vapour transport of molybdenum and tungsten diselenides by various transport agents , 1993 .

[278]  N. V. Smith,et al.  Band structures of the layer compounds 1T-TaS2 and 2H-TaSe2 in the presence of commensurate charge-density waves , 1985 .

[279]  Frank Wilczek,et al.  Fractional Statistics and the Quantum Hall Effect , 1984 .

[280]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[281]  Shoji Tanaka,et al.  Electrical Transport Properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2 , 1982 .

[282]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[283]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[284]  R. Clarke,et al.  A low-temperature structural phase transition in β-MoTe2 , 1978 .

[285]  S. Chern On the Curvatura Integra in a Riemannian Manifold , 1945 .

[286]  Tay-Rong Chang,et al.  Metal–Semiconductor Phase‐Transition in WSe2(1‐x)Te2x Monolayer , 2017, Advanced materials.

[287]  Su-Yang Xu,et al.  D ec 2 01 6 Weyl Semimetals , Fermi Arcs and Chiral Anomalies ( A Short Review ) , 2016 .

[288]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.