Accurate ab initio density fitting for multiconfigurational self-consistent field methods.

Using Cholesky decomposition and density fitting to approximate the electron repulsion integrals, an implementation of the complete active space self-consistent field (CASSCF) method suitable for large-scale applications is presented. Sample calculations on benzene, diaquo-tetra-mu-acetato-dicopper(II), and diuraniumendofullerene demonstrate that the Cholesky and density fitting approximations allow larger basis sets and larger systems to be treated at the CASSCF level of theory with controllable accuracy. While strict error control is an inherent property of the Cholesky approximation, errors arising from the density fitting approach are managed by using a recently proposed class of auxiliary basis sets constructed from Cholesky decomposition of the atomic electron repulsion integrals.

[1]  I. Røeggen,et al.  On the Beebe-Linderberg two-electron integral approximation , 1986 .

[2]  R. Lindh,et al.  Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. , 2007, The Journal of chemical physics.

[3]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[4]  B. Roos,et al.  A CASSCF‐CCI study of the valence and lower excited states of the benzene molecule , 1987 .

[5]  I. Røeggen An ab initio study of the fcc and hcp structures of helium. , 2006, The Journal of chemical physics.

[6]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[7]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[8]  H. Koch,et al.  Coupled cluster calculations of interaction energies in benzene–fluorobenzene van der Waals complexes , 2007 .

[9]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[10]  David J. Giesen,et al.  The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges , 1996 .

[11]  Filipp Furche,et al.  Nuclear second analytical derivative calculations using auxiliary basis set expansions , 2004 .

[12]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[13]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[14]  J. Simons,et al.  Application of cholesky-like matrix decomposition methods to the evaluation of atomic orbital integrals and integral derivatives , 1989 .

[15]  B. Roos,et al.  A theoretical investigation of valence and Rydberg electronic states of acrolein. , 2003 .

[16]  Xin Wu,et al.  Dimetalloendofullerene U(2)@C(60) has a U-U multiple bond consisting of sixfold one-electron-two-center bonds. , 2007, Journal of the American Chemical Society.

[17]  Francesc Illas,et al.  A unified view of the theoretical description of magnetic coupling in molecular chemistry and solid state physics. , 2006, Physical chemistry chemical physics : PCCP.

[18]  Frederick R. Manby,et al.  The Poisson equation in density fitting for the Kohn-Sham Coulomb problem , 2001 .

[19]  Francesco Aquilante,et al.  Fast noniterative orbital localization for large molecules. , 2006, The Journal of chemical physics.

[20]  David E. Bernholdt,et al.  Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method , 1998 .

[21]  B. Roos,et al.  New relativistic ANO basis sets for actinide atoms , 2005 .

[22]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[23]  K. Pierloot,et al.  Relative energy of the high-(5T2g) and low-(1A1g) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. , 2008, The Journal of chemical physics.

[24]  B. Roos,et al.  A CASPT2 study of the valence and lowest Rydberg electronic states of benzene and phenol , 1995 .

[25]  F. Aquilante,et al.  p-Benzoquinone in aqueous solution: Stark shifts in spectra, asymmetry in solvent structure. , 2007, Physical chemistry chemical physics : PCCP.

[26]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[27]  B. Roos,et al.  Towards an accurate molecular orbital theory for excited states: the benzene molecule , 1992 .

[28]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[29]  Thomas Bondo Pedersen,et al.  Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. , 2004, The Journal of chemical physics.

[30]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[31]  Francesco Aquilante,et al.  Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): Application to the Spin-State Energetics of Co(III)(diiminato)(NPh). , 2008, Journal of chemical theory and computation.

[32]  M. Olivucci,et al.  Photostability versus photodegradation in the excited-state intramolecular proton transfer of nitro enamines: competing reaction paths and conical intersections. , 2007, Journal of the American Chemical Society.

[33]  Markus P. Fülscher,et al.  Theoretical Study of the Electronic Spectroscopy of Peptides. III. Charge-Transfer Transitions in Polypeptides , 1998 .

[34]  I. Røeggen Analytic functions for the three-body potential of the helium trimer. , 2007, The Journal of chemical physics.

[35]  Dmitrij Rappoport,et al.  Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. , 2005, The Journal of chemical physics.

[36]  Roland Lindh,et al.  Unbiased auxiliary basis sets for accurate two-electron integral approximations. , 2007, The Journal of chemical physics.

[37]  M. D. Koning Optimizing the driving function for nonequilibrium free-energy calculations in the linear regime: A variational approach , 2005 .

[38]  H. Koch,et al.  Carbon nanorings: A challenge to theoretical chemistry. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  S. Ten-no,et al.  Three-center expansion of electron repulsion integrals with linear combination of atomic electron distributions , 1995 .

[40]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[41]  M. Olivucci,et al.  Quenching of tryptophan (1)(pi,pi*) fluorescence induced by intramolecular hydrogen abstraction via an aborted decarboxylation mechanism. , 2002, Journal of the American Chemical Society.

[42]  Seiichiro Ten-no,et al.  Multiconfiguration self‐consistent field procedure employing linear combination of atomic‐electron distributions , 1996 .

[43]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[44]  H. Koch,et al.  Origin invariant calculation of optical rotation without recourse to London orbitals , 2004 .

[45]  H. Koch,et al.  Variation of polarizability in the [4n+2] annulene series: from [22]- to [66]-annulene. , 2008, Physical chemistry chemical physics : PCCP.

[46]  Alistair P. Rendell,et al.  COUPLED-CLUSTER THEORY EMPLOYING APPROXIMATE INTEGRALS : AN APPROACH TO AVOID THE INPUT/OUTPUT AND STORAGE BOTTLENECKS , 1994 .

[47]  B. Roos,et al.  Exploring the actinide-actinide bond: theoretical studies of the chemical bond in Ac2, Th2, Pa2, and U2. , 2006, Journal of the American Chemical Society.

[48]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[49]  Stephen Wilson,et al.  Universal basis sets and Cholesky decomposition of the two-electron integral matrix , 1990 .

[50]  B. Roos,et al.  An ab initio study of the molecular structure and vibration-rotation spectrum of the triplet radical HCCN , 1988 .

[51]  Kasper P. Jensen,et al.  The allyl radical revisited: a theoretical study of the electronic spectrum , 2003 .

[52]  Henrik Koch,et al.  Polarizabilities of small annulenes from Cholesky CC2 linear response theory , 2004 .

[53]  Francesco Aquilante,et al.  Quartic scaling evaluation of canonical scaled opposite spin second-order Møller Plesset correlation energy using Cholesky decompositions , 2007 .

[54]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[55]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[56]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[57]  Filipp Furche,et al.  An efficient implementation of second analytical derivatives for density functional methods , 2002 .

[58]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[59]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[60]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .