Accelerated spin‐echo functional MRI using multisection excitation by simultaneous spin‐echo interleaving (MESSI) with complex‐encoded generalized slice dithered enhanced resolution (cgSlider) simultaneous multislice echo‐planar imaging

Spin‐echo functional MRI (SE‐fMRI) has the potential to improve spatial specificity when compared with gradient‐echo fMRI. However, high spatiotemporal resolution SE‐fMRI with large slice‐coverage is challenging as SE‐fMRI requires a long echo time to generate blood oxygenation level‐dependent (BOLD) contrast, leading to long repetition times. The aim of this work is to develop an acquisition method that enhances the slice‐coverage of SE‐fMRI at high spatiotemporal resolution.

[1]  Mathews Jacob,et al.  Multi‐shot sensitivity‐encoded diffusion data recovery using structured low‐rank matrix completion (MUSSELS) , 2017, Magnetic resonance in medicine.

[2]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[3]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[4]  J H Duyn,et al.  Inflow versus deoxyhemoglobin effects in bold functional MRI using gradient echoes at 1.5 T , 1994, NMR in biomedicine.

[5]  Kawin Setsompop,et al.  Advancing RF pulse design using an open‐competition format: Report from the 2015 ISMRM challenge , 2017, Magnetic resonance in medicine.

[6]  Allen W. Song,et al.  A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE) , 2013, NeuroImage.

[7]  N. Ramsey,et al.  Phase Navigator Correction in 3D fMRI Improves Detection of Brain Activation: Quantitative Assessment with a Graded Motor Activation Procedure , 1998, NeuroImage.

[8]  Richard Bowtell,et al.  Echo-shifted multislice EPI for high-speed fMRI. , 2006, Magnetic resonance imaging.

[9]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[10]  Kawin Setsompop,et al.  A low power radiofrequency pulse for simultaneous multislice excitation and refocusing , 2014, Magnetic resonance in medicine.

[11]  Duan Xu,et al.  Reduced field-of-view diffusion-weighted imaging of the brain at 7 T. , 2010, Magnetic resonance imaging.

[12]  Toralf Mildner,et al.  An Investigation of the Value of Spin-Echo-Based fMRI Using a Stroop Color–Word Matching Task and EPI at 3 T , 2002, NeuroImage.

[13]  Xiaoping Hu,et al.  Potential pitfalls of functional MRI using conventional gradient‐recalled echo techniques , 1994, NMR in biomedicine.

[14]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[15]  Lawrence L. Wald,et al.  Simultaneous Time Interleaved MultiSlice (STIMS) for Rapid Susceptibility Weighted acquisition , 2017, NeuroImage.

[16]  Thomas R. Knösche,et al.  k-space and q-space: Combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T , 2012, NeuroImage.

[17]  A. Macovski,et al.  Variable-rate selective excitation , 1988 .

[18]  J. Voyvodic,et al.  High‐resolution echo‐planar fMRI of human visual cortex at 3.0 tesla , 1997, NMR in biomedicine.

[19]  David G. Norris,et al.  Multiband echo‐shifted echo planar imaging , 2017, Magnetic resonance in medicine.

[20]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Essa Yacoub,et al.  Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans , 2005, NeuroImage.

[22]  Jeff H. Duyn,et al.  The PRESTO technique for fMRI , 2012, NeuroImage.

[23]  Robin M Heidemann,et al.  Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging , 2005, Magnetic resonance in medicine.

[24]  J. R. Baker,et al.  The intravascular contribution to fmri signal change: monte carlo modeling and diffusion‐weighted studies in vivo , 1995, Magnetic resonance in medicine.

[25]  J Szumowski,et al.  SIMA: Simultaneous Multislice Acquisition of MR Images by Hadamard‐Encoded Excitation , 1988, Journal of computer assisted tomography.

[26]  E M Haacke,et al.  Reducing motion artifacts in two-dimensional Fourier transform imaging. , 1986, Magnetic resonance imaging.

[27]  J. Jean Chen,et al.  Spin-Echo Resting-State Functional Connectivity in High-Susceptibility Regions: Accuracy, Reliability, and the Impact of Physiological Noise , 2016, Brain Connect..

[28]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[29]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[30]  Lawrence L. Wald,et al.  Impacting the effect of fMRI noise through hardware and acquisition choices – Implications for controlling false positive rates , 2017, NeuroImage.

[31]  David G Norris,et al.  Power independent of number of slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation , 2011, Magnetic resonance in medicine.

[32]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[33]  J Hennig,et al.  Multislice interleaved excitation cycles (MUSIC): An efficient gradient‐echo technique for functional MRI , 1996, Magnetic resonance in medicine.

[34]  David G. Norris,et al.  Spin-echo fMRI: The poor relation? , 2012, NeuroImage.

[35]  Nikolaus Weiskopf,et al.  Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T , 2006, NeuroImage.

[36]  SoHyun Han,et al.  Gradient‐echo and spin‐echo blood oxygenation level–dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla , 2018, Magnetic resonance in medicine.

[37]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[38]  Don M. Ragot,et al.  Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T. , 2019, Magnetic resonance imaging.

[39]  S G Kim,et al.  Magnetic resonance studies of brain function and neurochemistry. , 2000, Annual review of biomedical engineering.

[40]  J. Duyn,et al.  A. functional MRI technique combining principles of echo‐shifting with a train of observations (PRESTO) , 1993, Magnetic resonance in medicine.

[41]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[42]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[43]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[44]  Essa Yacoub,et al.  Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies , 2019, NeuroImage.

[45]  J R MacFall,et al.  The use of gradient flow compensation to separate diffusion and microcirculatory flow in MRI , 1991, Magnetic resonance in medicine.

[46]  Peter J. Koopmans,et al.  Whole brain, high resolution multiband spin-echo EPI fMRI at 7T: A comparison with gradient-echo EPI using a color-word Stroop task , 2014, NeuroImage.

[47]  Guoying Liu,et al.  Fast echo‐shifted gradient‐recalled MRI: Combining a short repetition time with variable T2* weighting , 1993, Magnetic resonance in medicine.

[48]  D B Plewes,et al.  TE interleaving: New multisection imaging technique , 1991, Journal of magnetic resonance imaging : JMRI.

[49]  Felix Breuer,et al.  Simultaneous multislice (SMS) imaging techniques , 2015, Magnetic resonance in medicine.

[50]  Guoying Liu,et al.  A fast gradient‐recalled MRI technique with increased sensitivity to dynamic susceptibility effects , 1992, Magnetic resonance in medicine.

[51]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Larkman,et al.  Use of multicoil arrays for separation of signal from multiple slices simultaneously excited , 2001, Journal of magnetic resonance imaging : JMRI.

[53]  Peter J. Koopmans,et al.  Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7T , 2012, NeuroImage.

[54]  Matthias Günther,et al.  Simultaneous spin‐echo refocusing , 2005, Magnetic resonance in medicine.

[55]  A. Kleinschmidt,et al.  Brain or veinoxygenation or flow? On signal physiology in functional MRI of human brain activation , 1994, NMR in biomedicine.

[56]  J. Frahm,et al.  MRI of “diffusion” in the human brain: New results using a modified CE‐FAST sequence , 1989, Magnetic resonance in medicine.

[57]  P. R. Moran,et al.  Artifacts from pulsatile flow in MR imaging. , 1986, Journal of computer assisted tomography.

[58]  Kawin Setsompop,et al.  Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate , 2015, Magnetic resonance in medicine.

[59]  Kawin Setsompop,et al.  Rapid brain MRI acquisition techniques at ultra‐high fields , 2016, NMR in biomedicine.

[60]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[61]  Kawin Setsompop,et al.  Simultaneous multislice excitation by parallel transmission , 2014, Magnetic resonance in medicine.

[62]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[63]  Essa Yacoub,et al.  High-Field fMRI for Human Applications: An Overview of Spatial Resolution and Signal Specificity , 2011, The open neuroimaging journal.

[64]  Bixente Dilharreguy,et al.  A PRESTO‐SENSE sequence with alternating partial‐Fourier encoding for rapid susceptibility‐weighted 3D MRI time series , 2003, Magnetic resonance in medicine.

[65]  K. Uğurbil,et al.  Parallel imaging performance as a function of field strength—An experimental investigation using electrodynamic scaling , 2004, Magnetic resonance in medicine.

[66]  D. Feinberg,et al.  Halving MR imaging time by conjugation: demonstration at 3.5 kG. , 1986, Radiology.

[67]  Yogesh Rathi,et al.  High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider‐SMS) , 2018, Magnetic resonance in medicine.

[68]  D. Norris Principles of magnetic resonance assessment of brain function , 2006, Journal of magnetic resonance imaging : JMRI.