Dynamics of ferromagnetic bimerons driven by spin currents and magnetic fields

Magnetic bimeron composed of two merons is a topological counterpart of magnetic skyrmion in in-plane magnets, which can be used as the nonvolatile information carrier in spintronic devices. Here we analytically and numerically study the dynamics of ferromagnetic bimerons driven by spin currents and magnetic fields. Numerical simulations demonstrate that two bimerons with opposite signs of topological numbers can be created simultaneously in a ferromagnetic thin film via current-induced spin torques. The current-induced spin torques can also drive the bimeron and its speed is analytically derived, which agrees with the numerical results. Since the bimerons with opposite topological numbers can coexist and have opposite drift directions, two-lane racetracks can be built in order to accurately encode the data bits. In addition, the dynamics of bimerons induced by magnetic field gradients and alternating magnetic fields are investigated. It is found that the bimeron driven by alternating magnetic fields can propagate along a certain direction. Moreover, combining a suitable magnetic field gradient, the Magnus-force-induced transverse motion can be completely suppressed, which implies that there is no skyrmion Hall effect. Our results are useful for understanding of the bimeron dynamics and may provide guidelines for building future bimeron-based spintronic devices.

[1]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[2]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[5]  S. Zhang,et al.  Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.

[6]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[7]  O. Tchernyshyov,et al.  Vortices in thin ferromagnetic films and the skyrmion number , 2006, cond-mat/0611392.

[8]  D. Clarke,et al.  Dynamics of domain walls in magnetic nanostrips. , 2007, Physical review letters.

[9]  G. Chern,et al.  Dynamics of a vortex domain wall in a magnetic nanostrip: application of the collective-coordinate approach , 2008, 0806.3283.

[10]  M. Ezawa Compact merons and skyrmions in thin chiral magnetic films , 2010, 1010.4119.

[11]  M. Raju,et al.  In-plane magnetic anisotropy and coercive field dependence upon thickness of CoFeB , 2012 .

[12]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[13]  A. Brataas,et al.  Staggered dynamics in antiferromagnets by collective coordinates. , 2012, Physical review letters.

[14]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[15]  J. Zang,et al.  Dynamics of an insulating Skyrmion under a temperature gradient. , 2013, Physical review letters.

[16]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[17]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[18]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[19]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[20]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[21]  S. Komineas,et al.  Skyrmion dynamics in chiral ferromagnets , 2015, 1508.04821.

[22]  Y. Zhou,et al.  All-magnetic control of skyrmions in nanowire by spin wave , 2015, 2015 IEEE Magnetics Conference (INTERMAG).

[23]  A. Saxena,et al.  Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy , 2014, 1406.1422.

[24]  S. Blügel,et al.  Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states , 2016, Scientific Reports.

[25]  Jan Müller Magnetic skyrmions on a two-lane racetrack , 2016 .

[26]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[27]  M. A. Bashir,et al.  Measuring nanoscale magnetic write head fields using a hybrid quantum register , 2016, 1602.02948.

[28]  Yan Zhou,et al.  Magnetic bilayer-skyrmions without skyrmion Hall effect , 2015, Nature Communications.

[29]  Yan Zhou,et al.  High-topological-number magnetic skyrmions and topologically protected dissipative structure , 2015, 1505.00522.

[30]  G. Finocchio,et al.  Magnetic skyrmions: from fundamental to applications , 2016 .

[31]  Yan Zhou,et al.  Skyrmion-Electronics: An Overview and Outlook , 2016, Proceedings of the IEEE.

[32]  Yan Zhou,et al.  Complementary Skyrmion Racetrack Memory With Voltage Manipulation , 2016, IEEE Electron Device Letters.

[33]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[34]  G. Zhao,et al.  Motion of Skyrmions in Well-Separated Two-Lane Racetracks , 2017 .

[35]  M. Mostovoy,et al.  Bound States of Skyrmions and Merons near the Lifshitz Point. , 2017, Physical review letters.

[36]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[37]  Xubing Lu,et al.  Magnetic field gradient driven dynamics of isolated skyrmions and antiskyrmions in frustrated magnets , 2017, 1712.03550.

[38]  Benjamin Krueger,et al.  Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing , 2017, 1702.04298.

[39]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[40]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[41]  J. Xia,et al.  An Improved Racetrack Structure for Transporting a Skyrmion , 2017, Scientific Reports.

[42]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[43]  Yan Zhou,et al.  Manipulating and trapping skyrmions by magnetic field gradients , 2017 .

[44]  A. Leonov,et al.  Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy , 2017, 1704.00100.

[45]  Yan Zhou,et al.  Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films , 2017, Nature Communications.

[46]  Qingfang Liu,et al.  Skyrmion motion driven by the gradient of voltage-controlled magnetic anisotropy , 2018, Journal of Magnetism and Magnetic Materials.

[47]  A. Samardak,et al.  Composite topological structure of domain walls in synthetic antiferromagnets , 2017, Scientific Reports.

[48]  Y. Tokura,et al.  Transformation between meron and skyrmion topological spin textures in a chiral magnet , 2018, Nature.

[49]  C. Eom,et al.  Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure , 2018, Nature Materials.

[50]  S. Woo Elusive spin textures discovered , 2018, Nature.

[51]  Yan Zhou,et al.  Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient , 2018, Physical Review B.

[52]  Mathias Kläui,et al.  Perspective: Magnetic skyrmions—Overview of recent progress in an active research field , 2018, Journal of Applied Physics.

[53]  G. Finocchio,et al.  Chiral skyrmions in an anisotropy gradient , 2018, Physical Review B.

[54]  W. Lew,et al.  Efficient skyrmion transport mediated by a voltage controlled magnetic anisotropy gradient. , 2018, Nanoscale.

[55]  Huanhuan Yang,et al.  Antiferromagnetism Emerging in a Ferromagnet with Gain. , 2018, Physical review letters.

[56]  Yan Zhou,et al.  Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. , 2017, Nano letters.

[57]  A. Fert,et al.  Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.

[58]  Se Kwon Kim Dynamics of bimeron skyrmions in easy-plane magnets induced by a spin supercurrent , 2019, Physical Review B.

[59]  T. Nozaki,et al.  Brownian motion of skyrmion bubbles and its control by voltage applications , 2019, Applied Physics Letters.

[60]  Qingfang Liu,et al.  Trochoidal antiskyrmion motion with microwave electric fields , 2019, Journal of Physics D: Applied Physics.

[61]  Yan Zhou Magnetic skyrmions: intriguing physics and new spintronic device concepts , 2018, National science review.

[62]  Yan Zhou,et al.  Spin torque nano-oscillators based on antiferromagnetic skyrmions , 2018, Applied Physics Letters.

[63]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[64]  C. Hwang,et al.  Existence of in-Plane Magnetic Skyrmion and its Motion under Current Flow , 2019 .

[65]  Yan Zhou,et al.  Dynamics of an antiferromagnetic skyrmion in a racetrack with a defect , 2019, Physical Review B.

[66]  A. Bergman,et al.  Ultrafast generation and dynamics of isolated skyrmions in antiferromagnetic insulators , 2018, Physical Review B.

[67]  J. Henk,et al.  Magnetic bimerons as skyrmion analogues in in-plane magnets , 2018, Physical Review B.

[68]  R. L. Fernandes,et al.  Skyrmions and merons in two-dimensional antiferromagnetic systems , 2019, Solid State Communications.

[69]  Yan Zhou,et al.  Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer , 2018, Physical Review Applied.

[70]  H. Ohno,et al.  Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles , 2019, Nature Communications.

[71]  M. Yung,et al.  Wiggling skyrmion propagation under parametric pumping , 2018, Physical Review B.

[72]  Motohiko Ezawa,et al.  Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[73]  Yan Zhou,et al.  Current-Induced Dynamics and Chaos of Antiferromagnetic Bimerons. , 2019, Physical review letters.

[74]  Magn. , 2020, Catalysis from A to Z.

[75]  Stability and dynamics of in-plane skyrmions in collinear ferromagnets , 2019, Physical Review B.

[76]  K. Inoue,et al.  Current-induced shuttlecock-like movement of non-axisymmetric chiral skyrmions , 2018, Scientific Reports.

[77]  Static and dynamic properties of bimerons in a frustrated ferromagnetic monolayer , 2020, Physical Review B.

[78]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[79]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.