The 2005 PASCAL Visual Object Classes Challenge

[1]  Diane Larlus,et al.  Création de Vocabulaires Visuels Efficaces pour la Catégorisation d'Images , 2006 .

[2]  Bernt Schiele,et al.  Integrating representative and discriminant models for object category detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[3]  Bernt Schiele,et al.  Local features for object class recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[4]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[5]  C. Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Hermann Ney,et al.  Improving a Discriminative Approach to Object Recognition Using Image Patches , 2005, DAGM-Symposium.

[7]  B. Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Hermann Ney,et al.  Discriminative training for object recognition using image patches , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  C. Schmid,et al.  Object Class Recognition Using Discriminative Local Features , 2005 .

[11]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[12]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Christophe Garcia,et al.  Convolutional face finder: a neural architecture for fast and robust face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  K. Mikolajczyk,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[15]  John Shawe-Taylor,et al.  Support Vector Machine to Synthesise Kernels , 2004, Deterministic and Statistical Methods in Machine Learning.

[16]  Bernt Schiele,et al.  Scale-Invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search , 2004, DAGM-Symposium.

[17]  J Eichhorn,et al.  Object categorization with SVM: kernels for local features , 2004 .

[18]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[19]  Peter Auer,et al.  Weak Hypotheses and Boosting for Generic Object Detection and Recognition , 2004, ECCV.

[20]  Cordelia Schmid,et al.  Selection of scale-invariant parts for object class recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Tony Jebara,et al.  A Kernel Between Sets of Vectors , 2003, ICML.

[22]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[24]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[25]  E. Oja,et al.  PicSOM-self-organizing image retrieval with MPEG-7 content descriptors , 2002, IEEE Trans. Neural Networks.

[26]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[27]  D. Comaniciu,et al.  The variable bandwidth mean shift and data-driven scale selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[28]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[29]  C. Greg Plaxton,et al.  The online median problem , 1999, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[31]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[32]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[33]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[34]  Céline Rouveirol,et al.  Proceedings of the 10th European Conference on Machine Learning , 1998 .

[35]  S. Lazebnik,et al.  Local Features and Kernels for Classification of Texture and Object Categories: An In-Depth Study , 2005 .

[36]  Beyond—bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[37]  Bernt Schiele,et al.  An Evaluation of Local Shape-Based Features for Pedestrian Detection , 2005, BMVC.

[38]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[39]  N. Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[40]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[41]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[42]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[43]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[44]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.