Cryogenic manufacturing processes

Abstract Cryogenically assisted manufacturing processes are emerging as environmentally-benign, toxic-free, hazardless operations, producing functionally superior products. This paper presents an overview of major cryogenic manufacturing processes, summarizing the state-of-the-art and significant developments during the last few decades. It begins with a summary of historic perspectives, including definitions, scope, and proceeds to analysis of process mechanics and material performance covering tribological and thermo-mechanical interactions, followed by surface integrity, product quality and performance in cryogenic manufacturing. Process analysis and applications includes machining, forming and grinding. Economic, safety and health issues are then discussed. Finally, progress in developing predictive performance models and future outlook are presented.

[1]  A. Zieliński,et al.  Influence of laser remelting at cryogenic conditions on corrosion resistance of non-ferrous alloys , 2009 .

[2]  Soumitra Paul,et al.  ENVIRONMENTALLY CONSCIOUS MACHINING AND GRINDING WITH CRYOGENIC COOLING , 2006 .

[3]  Rafael Wertheim,et al.  Investigation of Cooling and Lubrication Strategies for Machining High-temperature Alloys☆ , 2016 .

[4]  F. Meng,et al.  Role of Eta-carbide Precipitations in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment , 1994 .

[5]  A Aramcharoen,et al.  An Experimental Investigation on Cryogenic Milling of Inconel 718 and its Sustainability Assessment , 2014 .

[6]  Shane Y. Hong,et al.  Cryogenic properties of some cutting tool materials , 1992, Journal of Materials Engineering and Performance.

[7]  Shane Y. Hong LUBRICATION MECHANISMS OF LN2 IN ECOLOGICAL CRYOGENIC MACHINING , 2006 .

[8]  Domenico Umbrello,et al.  Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy , 2014 .

[9]  Jan C. Aurich,et al.  High-performance dry grinding using a grinding wheel with a defined grain pattern , 2008 .

[10]  S. Yao,et al.  Analysis on film boiling heat transfer of impacting sprays , 1989 .

[11]  Janez Kopac,et al.  Sustainable Machining Process - Myth or Reality , 2010 .

[12]  Soumitra Paul,et al.  Role of Cryogenic Cooling on Cutting Temperature in Turning Steel , 2002 .

[13]  J. Dang,et al.  Effects of Cryogenic Treatment on Mechanical Properties and Corrosion Resistance of LC4 Aluminum Alloy , 2012 .

[14]  Shi-Chune Yao,et al.  Heat Transfer of Impacting Water Mist on High Temperature Metal Surfaces , 2003 .

[15]  Jae-Myung Lee,et al.  Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants , 2015 .

[16]  Janez Kopac,et al.  Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—Application to the context of machining with carbide tools , 2013 .

[17]  G. A. Dreitser Modern Problems of Cryogenic Heat Transfer and its Enhancement (Generalization of Experimental Results, Practical Recommendations and Different Applications) , 2003 .

[18]  Matthew A. Davies,et al.  Recent advances in modelling of metal machining processes , 2013 .

[19]  N. R. Dhar,et al.  Beneficial effects of cryogenic cooling over dry and wet machining on tool wear and surface finish in turning AISI 1060 steel , 2001 .

[20]  Randall F. Barron,et al.  Film Boiling Under an Impinging Cryogenic Jet , 1994 .

[21]  F. Klocke,et al.  Thermo-Mechanical Tool Load during High Performance Cutting of Hard-to-Cut Materials , 2012 .

[22]  I. Jawahir,et al.  Surface integrity in cryogenic machining of nickel based alloy—Inconel 718 , 2011 .

[23]  A. B. Chattopadhyay,et al.  The effect of cryogenic cooling on grinding forces , 1996 .

[24]  Shane Y. Hong,et al.  Thermal aspects, material considerations and cooling strategies in cryogenic machining , 1999 .

[25]  O. W. Dillon,et al.  Surface Layer Modifications in Co-Cr-Mo Biomedical Alloy from Cryogenic Burnishing , 2011 .

[26]  I. S. Jawahir,et al.  Increased Surface Integrity in Porous Tungsten from Cryogenic Machining with Cermet Cutting Tool , 2016 .

[27]  Wayne Reitz,et al.  CRYOPROCESSING OF MATERIALS: A REVIEW OF CURRENT STATUS , 2001 .

[28]  Werner Schatt,et al.  Konstruktionswerkstoffe des Maschinen- und Anlagenbaues , 1998 .

[29]  M. Bermingham,et al.  A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6Al-4V cutting , 2012 .

[30]  Jae-Myung Lee,et al.  Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: Part I—Experimental investigations , 2011 .

[31]  N. R. Dhar,et al.  The influence of cryogenic cooling on tool wear, dimensional accuracy and surface finish in turning AISI 1040 and E4340C steels , 2001 .

[32]  Viktor P. Astakhov,et al.  Metal cutting theory foundations of near-dry (MQL) machining , 2010 .

[33]  R. J. Grant,et al.  Mechanical Behaviour of Commercial Aluminium Wrought Alloys at Low Temperatures , 2014 .

[34]  Z. Y. Wang,et al.  Cryogenic machining of hard-to-cut materials , 2000 .

[35]  Peter Krajnik,et al.  Transitioning to sustainable production – Part I: application on machining technologies , 2010 .

[36]  S. Yang,et al.  CRYOGENIC BURNISHING OF Co-Cr-Mo BIOMEDICAL ALLOY FOR ENHANCED SURFACE INTEGRITY AND IMPROVED WEAR PERFORMANCE , 2012 .

[37]  David A. Puleo,et al.  Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy , 2012 .

[38]  John W. Sutherland,et al.  Dry Machining and Minimum Quantity Lubrication , 2004 .

[39]  U. F. Kocks,et al.  Kinetics of flow and strain-hardening☆ , 1981 .

[40]  Shane Y. Hong,et al.  New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V , 2001 .

[41]  Stephen T. Newman,et al.  State-of-the-art cryogenic machining and processing , 2013, Int. J. Comput. Integr. Manuf..

[42]  I. S. Jawahir,et al.  Finite element modeling of microstructural changes in dry and cryogenic machining of AZ31B magnesium alloy , 2014 .

[43]  Z. Y. Wang,et al.  Cryogenic Machining of Tantalum , 2002 .

[44]  Marc A. Meyers,et al.  THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION , 2001 .

[45]  Shane Y. Hong,et al.  Friction and cutting forces in cryogenic machining of Ti–6Al–4V , 2001 .

[46]  K. Maekawa,et al.  Effects of coolant on temperature distribution in metal machining , 1988 .

[47]  Douglas G Talley,et al.  Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures , 2002 .

[48]  G. Poulachon,et al.  Process Mechanics and Surface Integrity Induced by Dry and Cryogenic Machining of AZ31B-O Magnesium Alloy , 2013 .

[49]  I. S. Jawahir,et al.  Enhancing the Surface Integrity of Ti-6Al-4V Alloy through Cryogenic Burnishing☆ , 2014 .

[50]  B. Yalçın,et al.  The effects of various cooling strategies on surface roughness and tool wear during soft materials milling , 2009 .

[51]  Janez Kopac,et al.  Sustainable machining of high temperature Nickel alloy – Inconel 718: part 2 – chip breakability and optimization , 2015 .

[52]  Y. Kakinuma,et al.  Micromachining of Soft Polymer Material applying Cryogenic Cooling , 2008 .

[53]  Ellen A Eisen,et al.  Rectal cancer and exposure to metalworking fluids in the automobile manufacturing industry , 2006, Occupational and Environmental Medicine.

[54]  R. Thornton,et al.  The effects of cryogenic processing on the wear resistance of grey cast iron brake discs , 2011 .

[55]  Wit Grzesik,et al.  Effects of cryogenic cooling on surface layer characteristics produced by hard turning , 2012 .

[56]  Wit Grzesik,et al.  Producing high quality hardened parts using sequential hard turning and ball burnishing operations , 2013 .

[57]  Janez Kopac,et al.  Sustainable machining of high temperature Nickel alloy – Inconel 718: part 1 – predictive performance models , 2014 .

[58]  Domenico Umbrello,et al.  Analysis of the white layers formed during machining of hardened AISI 52100 steel under dry and cryogenic cooling conditions , 2013 .

[59]  Vimal Dhokia,et al.  Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids , 2012 .

[60]  P. Zhang,et al.  Confined jet impingement of liquid nitrogen onto different heat transfer surfaces , 2011 .

[61]  John W. Sutherland,et al.  Evaluating Cutting Fluid Effects on Cylinder Boring Surface Errors by Inverse Heat Transfer and Finite Element Methods , 2000 .

[62]  Dirk Biermann,et al.  Machinability of β‐Titanium Alloy Ti‐10V‐2Fe‐3Al with Different Microstructures , 2012 .

[63]  Paolo C. Priarone,et al.  High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity , 2013 .

[64]  I. S. Jawahir,et al.  Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining , 2014 .

[65]  Stefania Bruschi,et al.  Finite Element Simulation of Semi-finishing Turning of Electron Beam Melted Ti6Al4V Under Dry and Cryogenic Cooling , 2015 .

[66]  Ekkard Brinksmeier,et al.  Metalworking fluids—Mechanisms and performance , 2015 .

[67]  S. Newman,et al.  Cryogenic Machining of Carbon Fibre , 2012 .

[68]  Ekkard Brinksmeier,et al.  Surface integrity in material removal processes: Recent advances , 2011 .

[69]  M. Dhananchezian,et al.  Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts , 2011 .

[70]  Janez Kopac,et al.  Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance , 2016 .

[71]  I. S. Jawahir,et al.  The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy , 2013, The International Journal of Advanced Manufacturing Technology.

[72]  Ekkard Brinksmeier,et al.  Surface hardening by cryogenic deep rolling , 2011 .

[73]  David A. Puleo,et al.  Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components , 2012 .

[74]  T. Brockhoff,et al.  Utilization of Grinding Heat as a New Heat Treatment Process , 1996 .

[75]  I. S. Jawahir,et al.  The Effects of Depth of Cut and Pre-cooling on Surface Porosity in Cryogenic Machining of Porous Tungsten , 2013 .

[76]  G. Nagarajan,et al.  Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel , 2008 .

[77]  M. M. Barash,et al.  The Mechanical State of the Sublayer of a Surface Generated by Chip-Removal Process—Part 1: Cutting With a Sharp Tool , 1976 .

[78]  Fritz Klocke,et al.  Present Situation and Future Trends in Modelling of Machining Operations Progress Report of the CIRP Working Group ‘Modelling of Machining Operations’ , 1998 .

[79]  Václav Tesař Enhancing impinging jet heat or mass transfer by fluidically generated flow pulsation , 2009 .

[80]  N. Fredj,et al.  Effects of the cryogenic cooling on the fatigue strength of the AISI 304 stainless steel ground components , 2006 .

[81]  Vikash Kumar Singh,et al.  On Chip Calibration For A 7 Bit Comparator Based Asyncronous Binary Search (CABS) A/D Converter , 2013 .

[82]  N. Fredj,et al.  Ground surface improvement of the austenitic stainless steel AISI 304 using cryogenic cooling , 2006 .

[83]  Joost Duflou,et al.  Incremental forming of aluminium alloys in cryogenic environment , 2016 .

[84]  Raju Pawade,et al.  Comparative Study of High Speed Machining of Inconel 718 in Dry Condition and by Using Compressed Cold Carbon Dioxide Gas as Coolant , 2014 .

[85]  G. Manimaran,et al.  Influence of cryogenic cooling on surface grinding of stainless steel 316 , 2014 .

[86]  Fabrizio Micari,et al.  A critical analysis on the friction modelling in orthogonal machining , 2007 .

[87]  A. Woodcraft An introduction to cryogenics , 2007 .

[88]  Paulo A.F. Martins,et al.  Cutting under active and inert gas shields: A contribution to the mechanics of chip flow , 2010 .

[89]  Shane Y. Hong,et al.  Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V , 2001 .

[90]  Michael Oschwald,et al.  Understanding Injection into High Pressure Supercritical Environments , 2003 .

[91]  N. R. Dhar,et al.  Machining of AISI 4140 steel under cryogenic cooling—tool wear, surface roughness and dimensional deviation , 2002 .

[92]  A. Rajadurai,et al.  Microstructural study of cryogenically treated En 31 bearing steel , 2009 .

[93]  Jiang Yong,et al.  Effect of cryogenic treatment on WC–Co cemented carbides , 2011 .

[94]  Jorge Moreno,et al.  New concepts for bio-inspired sustainable grinding , 2015 .

[95]  Hans Kurt Tönshoff,et al.  Abrasive Machining in the Future , 1993 .

[96]  Liangchi Zhang,et al.  Grinding-hardening with liquid nitrogen: Mechanisms and technology , 2007 .

[97]  Yuri Estrin,et al.  Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect , 1996 .

[98]  G. Boothroyd,et al.  Lubricating Action of Cutting Fluids , 1965 .

[99]  I. S. Jawahir,et al.  Evaluation of Process Performance for Sustainable Hard Machining , 2012 .

[100]  Maciej Chorowski Combined Thermo-Hydraulic Analysis of a Cryogenic Jet , 2000 .

[101]  M. Kalin,et al.  Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS , 2006 .

[102]  V. Firouzdor,et al.  Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill , 2008 .

[103]  H. Tsai,et al.  Investigation of the transient thermal deflection and stresses of the workpiece in surface grinding with the application of a cryogenic magnetic chuck , 1998 .

[104]  H Kromhout,et al.  An assessment of dermal exposure to semi-synthetic metal working fluids by different methods to group workers for an epidemiological study on dermatitis , 2005, Occupational and Environmental Medicine.

[105]  Shane Y. Hong,et al.  Micro-temperature manipulation in cryogenic machining of low carbon steel , 2001 .

[106]  João Fernando Gomes de Oliveira,et al.  Dry grinding process with workpiece precooling , 2015 .

[107]  Martin Dix,et al.  Modeling of drilling assisted by cryogenic cooling for higher efficiency , 2014 .

[108]  M. Rahman,et al.  Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts , 2003 .

[109]  Peter Krajnik,et al.  Transitioning to sustainable production – part II: evaluation of sustainable machining technologies , 2010 .

[110]  A. B. Chattopadhyay,et al.  Effects of cryo-cooling in grinding steels , 1993 .

[111]  Martin Pugh,et al.  Effect of cryogenic treatment on the mechanical properties of 4340 steel , 2007 .

[112]  S. P. Natarajan,et al.  FPGA based Fuzzy Logic Control for Single Phase Multilevel Inverter , 2010 .

[113]  Ruzhu Wang,et al.  Flow boiling of liquid nitrogen in micro-tubes: Part II – Heat transfer characteristics and critical heat flux , 2007 .

[114]  A. B. Chattopadhyay,et al.  Turning of titanium alloy with TiB2-coated carbides under cryogenic cooling , 2003 .

[115]  Wilko Rohlfs,et al.  Local heat transfer coefficient measurement through a visibly-transparent heater under jet-impingement cooling , 2012 .

[116]  N. Alagumurthi,et al.  Effect of cryogenic treatment on microstructure and wear characteristics of AISI M35 HSS , 2013 .

[117]  Arun S. Mujumdar,et al.  Turbulent impinging jet heat transfer enhancement due to intermittent pulsation , 2010 .

[118]  M. A. El Baradie,et al.  Cutting fluids: Part I. Characterisation , 1996 .

[119]  I. S. Jawahir,et al.  The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy , 2015, Metallurgical and Materials Transactions A.

[120]  Domenico Umbrello,et al.  Numerical Simulation of Surface Modification in Dry and Cryogenic Machining of AA7075 Alloy , 2014 .

[121]  R. Thornton,et al.  Effects of deep cryogenic treatment on the wear development of H13A tungsten carbide inserts when machining AISI 1045 steel , 2014, Prod. Eng..

[122]  S. Renganarayanan,et al.  Cryogenic treatment to augment wear resistance of tool and die steels , 2001 .

[123]  John W. Sutherland,et al.  EXAMINING THE ROLE OF CUTTING FLUIDS IN MACHINING AND EFFORTS TO ADDRESS ASSOCIATED ENVIRONMENTAL/HEALTH CONCERNS , 2006 .

[124]  A. B. Chattopadhyay,et al.  Studies on the grindability of some alloy steels , 2000 .

[125]  J. Rösler,et al.  Mechanisches Verhalten der Werkstoffe , 2003 .

[126]  T. Jayakumar,et al.  Fatigue life extension of notches in AISI 304L weldments using deep cryogenic treatment , 2005 .

[127]  Harpreet Singh,et al.  Improvement In The Corrosion Rate And Mechanical Properties Of Low Carbon Steel Through Deep Cryogenic Treatment. , 2013 .

[128]  I. S. Jawahir,et al.  Enhanced Machinability of Ti-5553 Alloy from Cryogenic Machining: Comparison with MQL and Flood-cooled Machining and Modeling , 2015 .

[129]  J. I. Marquínez,et al.  Reduction of oil and gas consumption in grinding technology using high pour-point lubricants , 2013 .

[130]  N. R. Dhar,et al.  Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition , 2007 .

[131]  I. S. Jawahir,et al.  Cutting Speed Dependent Microstructure and Transformation Behavior of NiTi Alloy in Dry and Cryogenic Machining , 2014, Journal of Materials Engineering and Performance.

[132]  Álisson Rocha Machado,et al.  Performance of cryogenically treated HSS tools , 2006 .

[133]  M. Nalbant,et al.  Effect of cryogenic cooling in milling process of AISI 304 stainless steel , 2011 .

[134]  Jagdev Singh,et al.  Metallurgical and mechanical characteristics of cryogenically treated tungsten carbide (WC–Co) , 2012 .

[135]  C. Evans,et al.  Cryogenic Diamond Turning of Stainless Steel , 1991 .

[136]  T. Schaarschmidt,et al.  Next Generation High Performance Cutting by Use of Carbon Dioxide as Cryogenics , 2014 .

[137]  I. Jawahir,et al.  Size effects in finish machining of porous powdered metal for engineered surface quality , 2016 .

[138]  B. Ramji,et al.  Performance Study of Cryogenically Treated HSS Drills in Drillilg Gray Cast Iron Using Orthogonal Array Technique , 2010 .

[139]  Shane Y. Hong,et al.  Improving low carbon steel chip breakability by cryogenic chip cooling , 1999 .

[140]  Janez Kopac,et al.  Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel , 2012 .

[141]  Sebastian Fritsch,et al.  Cryogenic forming of AA7075 by Equal‐Channel Angular Pressing , 2012 .

[142]  I. S. Jawahir,et al.  Progressive tool-wear in machining of room-temperature austenitic NiTi alloys: The influence of cooling/lubricating, melting, and heat treatment conditions , 2015 .

[143]  E. Brinksmeier,et al.  Friction, Cooling and Lubrication in Grinding , 1999 .

[144]  Tao Lu,et al.  A Metrics-based Sustainability Assessment of Cryogenic Machining Using Modeling and Optimization of Process Performance , 2014 .

[145]  A. B. Chattopadhyay,et al.  Improvements in grinding steels by cryogenic cooling , 1985 .

[146]  R. Ghosh,et al.  Cryogenic Machining With Brittle Tools and Effects on Tool Life , 2003 .

[147]  Shane Y. Hong,et al.  EXPERIMENTAL EVALUATION OF FRICTION COEFFICIENT AND LIQUID NITROGEN LUBRICATION EFFECT IN CRYOGENIC MACHINING , 2002 .

[148]  Shane Y. Hong,et al.  Economical and ecological cryogenic machining of AISI 304 austenitic stainless steel , 2000 .

[149]  A. van den Beukel,et al.  Theory of the effect of dynamic strain aging on mechanical properties , 1975 .

[150]  Shane Y. Hong,et al.  Improvement of Chip Breaking in Machining Low Carbon Steel by Cryogenically Precooling the Workpiece , 1998 .

[151]  Matthew S. Dargusch,et al.  New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V , 2011 .

[152]  J. Thome,et al.  Convective Boiling and Condensation , 1972 .

[153]  Han Ding,et al.  The influence of cryogenic cooling on milling stability , 2014 .

[154]  Fritz Klocke,et al.  On high-speed turning of a third-generation gamma titanium aluminide , 2013 .

[155]  V. C. Venkatesh,et al.  Modeling of cryogenic frictional behaviour of titanium alloys using Response Surface Methodology approach , 2009 .

[156]  G. Nagarajan,et al.  Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment , 2005 .

[157]  Cristiana Delprete,et al.  Deep cryogenic treatment of AISI 302 stainless steel: Part II - Fatigue and corrosion , 2010 .

[158]  M. Dargusch,et al.  Machining Ti–6Al–4V alloy with cryogenic compressed air cooling , 2010 .

[159]  Eckard Macherauch,et al.  Das Verhalten metallischer Werkstoffe unter mechanischer Beanspruchung , 1978 .

[160]  Pedro J. Arrazola,et al.  Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting , 2013 .

[161]  R. Sri Siva,et al.  Optimization of Deep Cryogenic Treatment Process for 100Cr6 Bearing Steel Using the Grey-Taguchi Method , 2012 .

[162]  Giovanna Rotella Sustainable Machining of Aerospace Alloys for Improved Product and Process Sustainability: Evaluation of Dry, Near-dry (MQL) and Cryogenic Machining Processes , 2013 .

[163]  L. De Chiffre Function of cutting fluids in machining , 1988 .

[164]  R. G. Scurlock,et al.  A matter of degrees: A brief history of cryogenics , 1990 .

[165]  Koji Mishima,et al.  Pre-deformation-assisted cryogenic micromachining for fabrication of three-dimensional unique micro channels , 2009 .

[166]  Z. Y. Wang,et al.  Wear of CBN tool in turning of silicon nitride with cryogenic cooling , 1997 .

[167]  O. W. Dillon,et al.  The effects of temperature on the machining of metals , 1990 .

[168]  Amitava Ghosh,et al.  Effect of Cryogenic Cooling on Spindle Power and G-ratio in Grinding of Hardened Bearing Steel , 2014 .

[169]  Wei Li,et al.  Characterising the Integrity of Machined Surfaces in a Powder Nickel Alloy used in Aircraft Engines , 2014 .

[170]  David A Puleo,et al.  Effect of cryogenic burnishing on surface integrity modifications of Co-Cr-Mo biomedical alloy. , 2013, Journal of biomedical materials research. Part B, Applied biomaterials.

[171]  I. S. Jawahir,et al.  Evaluation of Present Numerical Models for Predicting Metal Cutting Performance And Residual Stresses , 2015 .

[172]  Vimal Dhokia,et al.  An Initial Study of the Effect of Using Liquid Nitrogen Coolant on the Surface Roughness of Inconel 718 Nickel-Based Alloy in CNC Milling , 2012 .

[173]  Fritz Klocke,et al.  Potential of Modern Lubricoolant Strategies on Cutting Performance , 2013 .

[174]  R. Ghosh,et al.  Investigation of White Layers Formed in Conventional and Cryogenic Hard Turning of Steels , 2003 .

[175]  Y. Shin,et al.  MICROSTRUCTURAL ANALYSIS AND MACHINABILITY IMPROVEMENT OF UDIMET 720 VIA CRYOGENIC MILLING , 2009 .

[176]  Domenico Umbrello,et al.  The effects of Cryogenic Cooling on Surface Integrity in Hard Machining , 2011 .

[177]  Y. Kakinuma,et al.  Ultra-precision cryogenic machining of viscoelastic polymers , 2012 .

[178]  G. Barrow,et al.  On the Stress Distribution Between the Chip and Tool During Metal Turning , 1989 .

[179]  R. Clapp,et al.  Environmental and Occupational Causes of Cancer: New Evidence 2005-2007 , 2008, Reviews on environmental health.

[180]  T. Sornakumar,et al.  TURNING STUDIES OF DEEP CRYOGENIC TREATED P-40 TUNGSTEN CARBIDE CUTTING TOOL INSERTS – TECHNICAL COMMUNICATION , 2009 .

[181]  R. Barron,et al.  Cryogenic treatment of metals to improve wear resistance , 1982 .

[182]  P. I. Patil,et al.  Comparison of Effects of Cryogenic Treatment onDifferent Types of Steels : A Review , 2012 .

[183]  Berend Denkena,et al.  Advancing Cutting Technology , 2003 .

[184]  Kyung-Tae Park,et al.  Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature , 2004 .

[185]  Noam Lior,et al.  Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling , 2006 .

[186]  I. S. Jawahir,et al.  Cryogenic cooling effect on surface and subsurface microstructural modifications in burnishing of Co–Cr–Mo biomaterial , 2015 .

[187]  Yakup Yildiz,et al.  A review of cryogenic cooling in machining processes , 2008 .

[188]  Vimal Dhokia,et al.  A Techno-Health Study of the Use of Cutting Fluids and Future Alternatives , 2014 .

[189]  D. Mohan Lal,et al.  Deep Cryogenic Treatment Improves Wear Resistance of En 31 Steel , 2008 .

[190]  Debes Bhattacharyya,et al.  CRYOGENIC MACHINING OF KEVLAR COMPOSITES , 1993 .

[191]  Bernhard Karpuschewski,et al.  Cryogenic wet-ice blasting—Process conditions and possibilities , 2013 .

[192]  Vijay K. Dhir Nucleate and transition boiling heat transfer under pool and external flow conditions , 1991 .

[193]  J. G. Kaufman,et al.  The Tensile Properties of Aluminum Alloys Formed at Cryogenic Temperatures , 1973 .

[194]  A. B. Chattopadhyay,et al.  Effects of cryogenic cooling by liquid nitrogen jet on forces, temperature and surface residual stresses in grinding steels , 1995 .

[195]  I. S. Jawahir,et al.  Cryogenic machining of porous tungsten for enhanced surface integrity , 2016 .

[196]  D. Umbrello,et al.  Analysis of Surface Integrity in Dry and Cryogenic Machining of AZ31B Mg Alloys , 2011 .

[197]  M. Pradeep Kumar,et al.  Experimental comparison of carbon-dioxide and liquid nitrogen cryogenic coolants in turning of AISI 1045 steel , 2012 .

[198]  L. Kopp,et al.  Werkstoffverhalten unter mechanischer Beanspruchung bei hohen und tiefen Temperaturen , 1970 .

[199]  A. L. Chaudhari,et al.  Development of Digital Image Processing using Fuzzy Gaussian Filter Tool for Diagnosis of Eye Infection , 2012 .

[200]  Thai Nguyen,et al.  Grinding–hardening using dry air and liquid nitrogen: Prediction and verification of temperature fields and hardened layer thickness , 2010 .

[201]  M. C. Shaw On the action of metal cutting fluids at low speeds , 1959 .

[202]  I. S. Jawahir,et al.  An Experimental Study of Cryogenic Machining on Nanocrystalline Surface Layer Generation , 2014 .

[203]  Shane Y. Hong,et al.  Economical and Ecological Cryogenic Machining , 2001 .

[204]  Ramsey F. Hamade,et al.  An experimental and numerical study of the effect of cryogenic cooling on the surface integrity of drilled holes in AZ31B Mg alloy , 2015 .

[205]  Shane Y. Hong,et al.  Cooling strategies for cryogenic machining from a materials viewpoint , 1992, Journal of Materials Engineering and Performance.

[206]  D. Biermann,et al.  Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: Cooling with carbon dioxide snow , 2011 .

[207]  D. Umbrello,et al.  The effects of cryogenic cooling on surface integrity in hard machining: A comparison with dry machining , 2011 .

[208]  Vishal S. Sharma,et al.  Cooling techniques for improved productivity in turning , 2009 .

[209]  Eberhard Abele,et al.  Using PCD for machining CGI with a CO2 coolant system , 2008, Prod. Eng..

[210]  Vimal Dhokia,et al.  A methodology for the determination of foamed polymer contraction rates as a result of cryogenic CNC machining , 2010 .

[211]  I. S. Jawahir,et al.  Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels , 2010 .

[212]  I. S. Jawahir,et al.  Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material , 2016 .

[213]  L. De Chiffre,et al.  Performance Testing of Cryogenic CO2 as Cutting Fluid in Parting/Grooving and Threading Austenitic Stainless Steel , 2007 .

[214]  Andre D. L. Batako,et al.  Application of Minimum Quantity Lubrication in Grinding , 2012 .