Single molecule fluorescence in situ hybridisation for quantitating post-transcriptional regulation in Drosophila brains

[1]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[2]  Visualizing mRNA by in situ hybridization using 'high resolution' and sensitive tyramide signal amplification , 1998 .

[3]  F S Fay,et al.  Visualization of single RNA transcripts in situ. , 1998, Science.

[4]  J. Nagle,et al.  Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. , 1998, Genes & development.

[5]  M. Tohyama,et al.  Two cis-acting elements in the 3′ untranslated region of α-CaMKII regulate its dendritic targeting , 2000, Nature Neuroscience.

[6]  Ilan Davis,et al.  Drosophila wingless and Pair-Rule Transcripts Localize Apically by Dynein-Mediated Transport of RNA Particles , 2001, Cell.

[7]  Bret J. Pearson,et al.  Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny , 2001, Cell.

[8]  M. Mayford,et al.  Disruption of Dendritic Translation of CaMKIIα Impairs Stabilization of Synaptic Plasticity and Memory Consolidation , 2002, Neuron.

[9]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[10]  Lynn Cooley,et al.  Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster , 2004, Nucleic Acids Res..

[11]  K. Mechtler,et al.  Asymmetric Segregation of the Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells , 2006, Cell.

[12]  Frank Hirth,et al.  The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila , 2006, Development.

[13]  C. Doe,et al.  Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. , 2006, Developmental cell.

[14]  H. Balci,et al.  Fluorescence Imaging with One-Nanometer Accuracy (FIONA). , 2007, CSH protocols.

[15]  P. Tomançak,et al.  Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function , 2007, Cell.

[16]  Bertram Gerber,et al.  The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. , 2007, Chemical senses.

[17]  D. Larson,et al.  Single-RNA counting reveals alternative modes of gene expression in yeast , 2008, Nature Structural &Molecular Biology.

[18]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[19]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[20]  P. Hiesinger,et al.  Preparation of Developing and Adult Drosophila Brains and Retinae for Live Imaging , 2010, Journal of visualized experiments : JoVE.

[21]  Sanjay Tyagi,et al.  Single molecule imaging of RNA in situ. , 2011, Methods in molecular biology.

[22]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[23]  Thomas R. Burkard,et al.  FACS Purification and Transcriptome Analysis of Drosophila Neural Stem Cells Reveals a Role for Klumpfuss in Self-Renewal , 2012, Cell reports.

[24]  C. Desplan,et al.  Temporal patterning of Drosophila medulla neuroblasts controls neural fates , 2013, Nature.

[25]  C. Doe,et al.  Combinatorial temporal patterning in progenitors expands neural diversity , 2013, Nature.

[26]  Brock Grill,et al.  The Nesprin Family Member ANC-1 Regulates Synapse Formation and Axon Termination by Functioning in a Pathway with RPM-1 and β-Catenin , 2014, PLoS genetics.

[27]  H. E. Johansson,et al.  Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells. , 2014, Methods in molecular biology.

[28]  Robert H. Singer,et al.  In the right place at the right time: visualizing and understanding mRNA localization , 2015, Nature Reviews Molecular Cell Biology.

[29]  Andrew G. York,et al.  Drosophila germ granules are structured and contain homotypic mRNA clusters , 2015, Nature Communications.

[30]  Luke P. Lee,et al.  Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates , 2015, Science.

[31]  N. Sokol,et al.  Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila , 2016, eLife.

[32]  H. E. Johansson,et al.  Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells. , 2016, Methods in molecular biology.

[33]  E. R. Gavis,et al.  Fixed and live visualization of RNAs in Drosophila oocytes and embryos. , 2016, Methods.

[34]  Christophe Zimmer,et al.  smiFISH and FISH-quant – a flexible single RNA detection approach with super-resolution capability , 2016, Nucleic acids research.

[35]  Qing-Rong Liu,et al.  Fluorescence Activated Cell Sorting (FACS) and Gene Expression Analysis of Fos-expressing Neurons from Fresh and Frozen Rat Brain Tissue. , 2016, Journal of visualized experiments : JoVE.

[36]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[37]  Enzymatic production of single-molecule FISH and RNA capture probes. , 2017, RNA.

[38]  Robert H Singer,et al.  Quantitative mRNA imaging throughout the entire Drosophila brain , 2016, Nature Methods.

[39]  R. Parton,et al.  Super-Resolution Single Molecule FISH at the Drosophila Neuromuscular Junction , 2017, Methods in molecular biology.

[40]  R. Parton,et al.  Erratum to: Super-Resolution Single Molecule FISH at the Drosophila Neuromuscular Junction , 2018, Methods in molecular biology.