Mastering the magnetic susceptibility of magnetically responsive bicelles with 3β-amino-5-cholestene and complexed lanthanide ions.

The magnetic susceptibility of lanthanide-chelating bicelles was selectively enhanced by introducing 3β-amino-5-cholestene (aminocholesterol, Chol-NH2) in the bilayer. Unprecedented magnetic alignment of the bicelles was achieved without altering their size. An aminocholesterol conjugate (Chol-C2OC2-NH2), in combination with different lanthanide ions, offers the possibility of fine-tuning the bicelle's magnetic susceptibility.

[1]  T. Aida,et al.  Magnetically Alignable Bicelles with Unprecedented Stability Using Tunable Surfactants Derived from Cholic Acid. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  J. Kohlbrecher,et al.  Tailoring Bicelle Morphology and Thermal Stability with Lanthanide-Chelating Cholesterol Conjugates. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[3]  Qiang Zhang,et al.  Hybrid bicelles as a pH-sensitive nanocarrier for hydrophobic drug delivery , 2016 .

[4]  M. Tang,et al.  Paramagnetic effects on the NMR spectra of isotropic bicelles with headgroup modified chelator lipids and metal ions. , 2016, Physical chemistry chemical physics : PCCP.

[5]  C. Tschierske,et al.  Cover Picture: Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules (ChemPhysChem 1/2016) , 2016 .

[6]  T. Aida,et al.  Chemically Locked Bicelles with High Thermal and Kinetic Stability. , 2015, Angewandte Chemie.

[7]  A. Ramamoorthy,et al.  Bicelles exhibiting magnetic alignment for a broader range of temperatures: a solid-state NMR study. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[8]  J. Kohlbrecher,et al.  Magnetically enhanced bicelles delivering switchable anisotropy in optical gels. , 2014, ACS applied materials & interfaces.

[9]  J. Kohlbrecher,et al.  Cholesterol-diethylenetriaminepentaacetate complexed with thulium ions integrated into bicelles to increase their magnetic alignability. , 2013, The journal of physical chemistry. B.

[10]  J. Kohlbrecher,et al.  Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[11]  R. Soong,et al.  When detergent meets bilayer: birth and coming of age of lipid bicelles. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[12]  C. Sandt,et al.  Bicellar systems to modify the phase behaviour of skin stratum corneum lipids. , 2012, Physical chemistry chemical physics : PCCP.

[13]  Ayyalusamy Ramamoorthy,et al.  The Magic of Bicelles Lights Up Membrane Protein Structure , 2012, Chemical reviews.

[14]  J. Kohlbrecher,et al.  Cholesterol increases the magnetic aligning of bicellar disks from an aqueous mixture of DMPC and DMPE-DTPA with complexed thulium ions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[15]  O. López,et al.  Bicelles: lipid nanostructured platforms with potential dermal applications. , 2012, Small.

[16]  B. Peterson,et al.  Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[17]  S. Opella,et al.  'q-Titration' of long-chain and short-chain lipids differentiates between structured and mobile residues of membrane proteins studied in bicelles by solution NMR spectroscopy. , 2012, Journal of magnetic resonance.

[18]  N. Matsumori,et al.  NMR-based conformational analysis of sphingomyelin in bicelles. , 2012, Bioorganic & medicinal chemistry.

[19]  J. Kikuchi,et al.  Synthesis of organic-inorganic hybrid bicelles-lipid bilayer nanodiscs encompassed by siloxane surfaces. , 2011, Chemical communications.

[20]  I. Vattulainen,et al.  Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol. , 2010, Biophysical journal.

[21]  Rachel W. Martin,et al.  Thermal stabilization of DMPC/DHPC bicelles by addition of cholesterol sulfate. , 2010, Journal of the American Chemical Society.

[22]  J. Vederas,et al.  Use of a copper-chelated lipid speeds up NMR measurements from membrane proteins. , 2010, Journal of the American Chemical Society.

[23]  J. Kohlbrecher,et al.  Novel type of bicellar disks from a mixture of DMPC and DMPE-DTPA with complexed lanthanides. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[24]  S. Opella,et al.  (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins. , 2010, Journal of magnetic resonance.

[25]  E. Pinkhassik,et al.  Directed covalent assembly of rigid organic nanodisks using self-assembled temporary scaffolds. , 2009, Chemical communications.

[26]  Ilpo Vattulainen,et al.  Ordering effects of cholesterol and its analogues. , 2009, Biochimica et biophysica acta.

[27]  S. Opella,et al.  Bicelle samples for solid-state NMR of membrane proteins , 2007, Nature Protocols.

[28]  Nicholas J Long,et al.  Lanthanides in magnetic resonance imaging. , 2006, Chemical Society reviews.

[29]  W. Martienssen,et al.  Springer handbook of condensed matter and materials data , 2005 .

[30]  Christiane Görller-Walrand,et al.  Lanthanide-containing liquid crystals and surfactants. , 2002, Chemical reviews.

[31]  J. Slotte,et al.  Cholesterol interactions with phospholipids in membranes. , 2002, Progress in lipid research.

[32]  R. Prosser,et al.  Lanthanide ion assisted magnetic alignment of model membranes and macromolecules , 2001 .

[33]  A. Ceulemans,et al.  On the magnetic anisotropy of lanthanide-containing metallomesogens , 2000 .

[34]  R. Bryant,et al.  Lanthanide chelates as bilayer alignment tools in NMR studies of membrane-associated peptides. , 1999, Journal of magnetic resonance.

[35]  S. Opella,et al.  Experimental aspects of multidimensional solid-state NMR correlation spectroscopy. , 1999, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[36]  V. Volkov,et al.  Novel chelate-induced magnetic alignment of biological membranes. , 1998, Biophysical journal.

[37]  R. Prosser,et al.  Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. , 1998, Biophysical journal.

[38]  R. Prosser,et al.  Magnetically Oriented Phospholipid Bilayered Micelles for Structural Studies of Polypeptides. Does the Ideal Bicelle Exist , 1996 .

[39]  S. A. Hunt,et al.  MAGNETICALLY ALIGNED MEMBRANE MODEL SYSTEMS WITH POSITIVE ORDER PARAMETER : SWITCHING THE SIGN OF SZZ WITH PARAMAGNETIC IONS , 1996 .

[40]  C. Pidgeon,et al.  Magnetically induced orientation of phosphatidylcholine membranes. , 1993, Biochimica et biophysica acta.

[41]  C. Sanders,et al.  Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. , 1992, Biochemistry.

[42]  J. Prestegard,et al.  Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. , 1988, Biochimica et biophysica acta.

[43]  M. Egret‐Charlier,et al.  A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. , 1980, Biochimica et biophysica acta.