The influence of surface pit shape on 4H-SiC double implanted MOSFETs (DMOSFETs) reliability under a high temperature drain bias test has been investigated. Threading dislocations formed two types of pit shapes (deep pit and shallow pit) on an epitaxial layer surface. The cause of the failure was revealed to be an oxide breakdown above the pit generated at the threading mixed dislocation in both pit shapes. Weibull distributions between two types of pits were different. Although the DMOSFETs on the epitaxial layer with the deep pit show longer lifetime than those with the shallow pit, the epitaxial layer with the shallow pit is suitable to estimate the lifetime of the DMOSFETs because of a linearity of the Weibull plot. The lifetime of the DMOSFETs with the shallow pit was dominated by an oxide electric field. The maximum oxide electric field required to obtain the lifetime of more than 10 years was estimated to be 2.7 MV/cm.