Dual-mode optical temperature sensing properties of PIN-PMN-PT:Pr3+ ceramic based on fluorescence intensity ratios and lifetimes

[1]  Feifei Wang,et al.  Microstructural, ferroelectric and photoluminescence properties of Er3+-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 thin films , 2021, Materials Chemistry and Physics.

[2]  M. J. Soares,et al.  Analogy of different optical temperature sensing techniques in LaNbO4:Er3+/Yb3+ phosphor , 2021, Journal of Luminescence.

[3]  R. Meyer,et al.  Textured Mn-doped PIN-PMN-PT Ceramics: Harnessing Intrinsic Piezoelectricity for High-power Transducer Applications , 2021 .

[4]  Fugen Wu,et al.  A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials , 2021 .

[5]  Z. Xi,et al.  Phase structures and electrical properties of Sm doped PSN-PMN-PT ceramics , 2021 .

[6]  Y. C. Ratnakaram,et al.  Synthesis and spectroscopic investigations on Pr3+-doped LiPbB5O9 phosphor: A blue converting red phosphor for white LEDs , 2021 .

[7]  J. Qiu,et al.  Optical temperature sensing properties of Tm3+/Yb3+ co-doped LuAG polycrystalline phosphor based on up-conversion luminescence , 2021, Journal of Luminescence.

[8]  Cong Lin,et al.  Smart white lighting and multi‐mode optical modulations via photochromism in Dy‐doped KNN‐based transparent ceramics , 2021 .

[9]  R. Meyer,et al.  Densification and properties of oxygen sintered CuO-doped PIN-PMN-PT ceramics , 2020 .

[10]  L. Carlos,et al.  High-Quantum-Yield Upconverting Er3+/Yb3+-Organic–Inorganic Hybrid Dual Coatings for Real-Time Temperature Sensing and Photothermal Conversion , 2020 .

[11]  Yan Lin,et al.  Temperature-dependent luminescence of a phosphor mixture of Li2TiO3: Mn4+ and Y2O3: Dy3+ for dual-mode optical thermometry , 2020 .

[12]  Zhenping Wu,et al.  In-situ tailoring upconversion processes from lanthanide ions doped ferroelectric films through piezoelectric strain , 2020 .

[13]  Dihu Chen,et al.  Upconversion photoluminescence and dual-mode temperature sensing properties of PIN-PMN-PT:Er3+ ceramic , 2020 .

[14]  Yuchun Wang,et al.  Growth and electrical properties of high‐Curie point rhombohedral Mn‐Pb(In 1/2 Nb 1/2 )O 3 ‐Pb(Mg 1/3 Nb 2/3 )O 3 ‐PbTiO 3 thin films , 2020 .

[15]  R. Meyer,et al.  Low temperature reactive sintering of CuO-doped PIN-PMN-PT ceramics , 2019 .

[16]  Rui Zhang,et al.  Large electrostrictive effect and high energy storage performance of Pr3+-doped PIN-PMN-PT multifunctional ceramics in the ergodic relaxor phase , 2019, Journal of the European Ceramic Society.

[17]  L. Carlos,et al.  Bandgap Engineering and Excitation Energy Alteration to Manage Luminescence Thermometer Performance. The Case of Sr2(Ge,Si)O4:Pr3+ , 2019, Advanced Optical Materials.

[18]  Yongcheng Zhang,et al.  Efficient upconversion photoluminescence in transparent Pr3+/Yb3+ co-doped 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 ferroelectric ceramics , 2019, Ceramics International.

[19]  Bin Xu,et al.  Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals , 2019, Science.

[20]  Yueli Zhang,et al.  Regulation of morphologies and luminescence of β-NaGdF4:Ybc+,Er3+ upconversion nanoparticles by hydrothermal method and their dual-mode thermometric properties , 2019, Applied Surface Science.

[21]  M. Kaczmarek,et al.  Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing. , 2019, Nanoscale.

[22]  L. Carlos,et al.  Lanthanide‐Based Thermometers: At the Cutting‐Edge of Luminescence Thermometry , 2018, Advanced Optical Materials.

[23]  P. Haro-González,et al.  Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing , 2018, Journal of Luminescence.

[24]  Chongfeng Guo,et al.  Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres. , 2018, Nanoscale.

[25]  Hengzhen Shi,et al.  NaLaMgWO 6 :Pr 3+ : A novel blue-light excitable red-emitting phosphor for white light-emitting diodes , 2018 .

[26]  M. Ferid,et al.  Optical temperature sensing of Er 3+ /Yb 3+ doped LaGdO 3 based on fluorescence intensity ratio and lifetime thermometry , 2018 .

[27]  D. Jaque,et al.  Upconverting nanocomposites with combined photothermal and photodynamic effects. , 2018, Nanoscale.

[28]  Yundong Zhang,et al.  Luminescence probe for temperature sensor based on fluorescence intensity ratio , 2017 .

[29]  정영호,et al.  Bi 0.5 Na 0.5 )TiO 3 세라믹스의 유전 및 전기열량 특성 , 2017 .

[30]  K. Horchani-Naifer,et al.  La2O3: Tm, Yb, Er upconverting nano-oxides for sub-tissue lifetime thermal sensing , 2016 .

[31]  Limei Zheng,et al.  Temperature and concentration effects on upconversion photoluminescence properties of Ho3+ and Yb3+ codoped 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 multifunctional ceramics , 2016 .

[32]  W. Cao,et al.  Densification behavior and electrical properties of CuO-doped Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics , 2016 .

[33]  Zhiguo Zhang,et al.  Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal , 2016 .

[34]  Xiangyong Zhao,et al.  Compositional segregation, structural transformation and property-temperature relationship of high-Curie temperature Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals , 2015, Journal of Materials Science: Materials in Electronics.

[35]  Qiwei Zhang,et al.  The photoluminescence and electrical properties of lead-free (Bi0.5Na0.5)TiO3:Pr ceramics , 2014 .

[36]  Weihua Tang,et al.  Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films. , 2014, Optics express.

[37]  Qiwei Zhang,et al.  Bi0.5Na0.5TiO3:Eu3+: An intense blue converting red phosphor , 2014 .

[38]  C. Duan,et al.  Neodymium doped lanthanum oxysulfide as optical temperature sensors , 2014 .

[39]  D. Jaque,et al.  Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing. , 2014, Nanoscale.