Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras

We say that an algebra $\Lambda$ over a commutative noetherian ring $R$ is Calabi-Yau of dimension $d$ ($d$-CY) if the shift functor $[d]$ gives a Serre functor on the bounded derived category of the finite length $\Lambda$-modules. We show that when $R$ is $d$-dimensional local Gorenstein the $d$-CY algebras are exactly the symmetric $R$-orders of global dimension $d$. We give a complete description of all tilting modules of projective dimension at most one for 2-CY algebras, and show that they are in bijection with elements of affine Weyl groups, preserving various natural partial orders. We show that there is a close connection between tilting theory for 3-CY algebras and the Fomin-Zelevinsky mutation of quivers (or matrices). We prove a conjecture of Van den Bergh on derived equivalence of noncommutative crepant resolutions.

[1]  R. Rouquier,et al.  Picard Groups for Derived Module Categories , 2003 .

[2]  M. Bridger,et al.  Stable Module Theory , 1969 .

[3]  Jeremy Rickard,et al.  Morita Theory for Derived Categories , 1989 .

[4]  A. Schofield,et al.  On a simplical complex associated with tilting modules , 1991 .

[5]  I. Reiten,et al.  Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.

[6]  Lieven Le Bruyn,et al.  Two Dimensional Tame and Maximal Orders of Finite Representation Type , 1989 .

[7]  R. Hartshorne Residues And Duality , 1966 .

[8]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[9]  Ragni Piene,et al.  The Legacy of Niels Henrik Abel , 2004 .

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  A. Rudakov,et al.  Exceptional vector bundles on projective spaces , 1987 .

[12]  R. Hartshorne Residues and Duality: Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963 /64 , 1966 .

[13]  Tom Bridgeland Flops and derived categories , 2000 .

[14]  C. Ringel,et al.  Vinberg’s characterization of dynkin diagrams using subadditive functions with application to DTr-periodic modules , 1980 .

[15]  Victor Ginzburg Calabi-Yau algebras , 2006 .

[16]  I. Reiten,et al.  Acyclic Calabi–Yau categories , 2006, Compositio Mathematica.

[17]  C. Stroppel,et al.  Cherednik, Hecke and quantum algebras as free Frobenius and Calabi-Yau extensions , 2006, math/0607170.

[18]  A. Bondal,et al.  Semiorthogonal decompositions for algebraic varieties. , 1995 .

[19]  B. Keller On the construction of triangle equivalences , 1998 .

[20]  Stability Conditions on a Non-Compact Calabi-Yau Threefold , 2005, math/0509048.

[21]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[22]  A. Schofield TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .

[23]  K. Bongartz Algebras and Quadratic Forms , 1983 .

[24]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[25]  L. Unger Schur modules over wild, finite dimensional path algebras with three simple modules , 1990 .

[26]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[27]  M. Auslander,et al.  Almost split sequences in subcategories , 1981 .

[28]  R. Y. Sharp SYZYGIES (London Mathematical Society Lecture Note Series, 106) , 1986 .

[29]  Maurice Auslander,et al.  Rational singularities and almost split sequences , 1986 .

[30]  Rigid modules over preprojective algebras , 2005, math/0503324.

[31]  I. Reiten,et al.  Skew group algebras in the representation theory of artin algebras , 1985 .

[32]  G. Gonzalez-Sprinberg,et al.  Construction géométrique de la correspondance de McKay , 1983 .

[33]  T-structures on some local Calabi–Yau varieties , 2005, math/0502050.

[34]  J. Verdier,et al.  Des catégories dérivées des catégories abéliennes , 1996 .

[35]  Idun Reiten,et al.  CLUSTER MUTATION VIA QUIVER REPRESENTATIONS , 2004 .

[36]  M. Kapranov,et al.  Kleinian singularities, derived categories and Hall algebras , 1998 .

[37]  Geoffrey Mason,et al.  The Santa Cruz Conference on Finite Groups , 1981 .

[38]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[39]  Michel Van den Bergh Three-dimensional flops and noncommutative rings , 2002 .

[40]  Autoequivalences of derived categories on the minimal resolutions of An-singularities on surfaces , 2004, math/0409151.

[41]  W. Rump Non-commutative Cohen–Macaulay Rings☆ , 2001 .

[42]  S. Goto,et al.  Finite Modules of Finite Injective Dimension Over a Noetherian Algebra , 2001 .

[43]  Raf Bocklandt Graded Calabi Yau algebras of dimension 3 , 2006 .

[44]  I. Reiten,et al.  Coxeter functors without diagrams , 1979 .

[45]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[46]  J. Herzog Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln , 1978 .

[47]  D. Happel,et al.  On a Partial Order of Tilting Modules , 2005 .

[48]  O. Iyama τ-Categories I: Ladders , 2005 .

[49]  I. Reiten,et al.  Cluster tilting for one-dimensional hypersurface singularities , 2007, 0704.1249.

[50]  I. Reiten,et al.  Applications of contravariantly finite subcategories , 1991 .

[51]  On triangulated orbit categories , 2005, math/0503240.

[52]  Idun Reiten,et al.  Noetherian hereditary abelian categories satisfying Serre duality , 2002 .

[53]  D. Happel,et al.  Almost complete tilting modules , 1989 .

[54]  S. Goto,et al.  Towards a theory of Bass numbers with application to Gorenstein algebras , 2002 .

[55]  Amnon Yekutieli Dualizing complexes over noncommutative graded algebras , 1992 .

[56]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[57]  Y. Yoshino,et al.  Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .

[58]  Dieter Happel,et al.  Binary polyhedral groups and Euclidean diagrams , 1980 .

[59]  Den Bergh,et al.  Non-commutative Crepant Resolutions , 2002 .

[60]  Mark Ramras Maximal orders over regular local rings of dimension two , 1969 .

[61]  H. Foxby Bounded complexes of flat modules , 1979 .

[62]  A. Braun On symmetric, smooth and Calabi–Yau algebras , 2007 .

[63]  Roland Berger,et al.  Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras , 2006, math/0610112.

[64]  Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.

[65]  Miles Reid,et al.  Mukai implies McKay: the McKay correspondence as an equivalence of derived categories , 1999, math/9908027.

[66]  O. Iyama τ-Categories II: Nakayama Pairs and Rejective Subcategories , 2005 .

[67]  Endre Süli,et al.  Foundations of Computational Mathematics, Santander 2005 (London Mathematical Society Lecture Note Series) , 2006 .

[68]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[69]  Andrei Zelevinsky,et al.  Generalized associahedra via quiver representations , 2002, math/0205152.

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[72]  Osamu Iyama,et al.  Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories , 2004, math/0407052.

[73]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[74]  A. Rudakov THE MARKOV NUMBERS AND EXCEPTIONAL BUNDLES ON P , 1989 .

[75]  O. Iyama Auslander–Reiten theory revisited , 2008, 0803.2841.

[76]  E. Kreines Appendix to the paper by Dr. Amnon Yekutieli "Dualizing complexes, Morita equivalence, and the derived Picard group of a ring , 1999 .

[77]  M. Artin,et al.  Reflexive modules over rational double points , 1985 .

[78]  Amnon Yekutieli,et al.  Derived Picard Groups of Finite-Dimensional Hereditary Algebras , 1999, Compositio Mathematica.

[79]  W. Rump Non-commutative Regular Rings , 2001 .

[80]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[81]  Ralf Schiffler,et al.  Quivers with relations arising from clusters $(A_n$ case) , 2004 .

[82]  Tilting theory and cluster combinatorics , 2004, math/0402054.