Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras
暂无分享,去创建一个
[1] R. Rouquier,et al. Picard Groups for Derived Module Categories , 2003 .
[2] M. Bridger,et al. Stable Module Theory , 1969 .
[3] Jeremy Rickard,et al. Morita Theory for Derived Categories , 1989 .
[4] A. Schofield,et al. On a simplical complex associated with tilting modules , 1991 .
[5] I. Reiten,et al. Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.
[6] Lieven Le Bruyn,et al. Two Dimensional Tame and Maximal Orders of Finite Representation Type , 1989 .
[7] R. Hartshorne. Residues And Duality , 1966 .
[8] Miles Reid,et al. Commutative Ring Theory , 1989 .
[9] Ragni Piene,et al. The Legacy of Niels Henrik Abel , 2004 .
[10] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[11] A. Rudakov,et al. Exceptional vector bundles on projective spaces , 1987 .
[12] R. Hartshorne. Residues and Duality: Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963 /64 , 1966 .
[13] Tom Bridgeland. Flops and derived categories , 2000 .
[14] C. Ringel,et al. Vinberg’s characterization of dynkin diagrams using subadditive functions with application to DTr-periodic modules , 1980 .
[15] Victor Ginzburg. Calabi-Yau algebras , 2006 .
[16] I. Reiten,et al. Acyclic Calabi–Yau categories , 2006, Compositio Mathematica.
[17] C. Stroppel,et al. Cherednik, Hecke and quantum algebras as free Frobenius and Calabi-Yau extensions , 2006, math/0607170.
[18] A. Bondal,et al. Semiorthogonal decompositions for algebraic varieties. , 1995 .
[19] B. Keller. On the construction of triangle equivalences , 1998 .
[20] Stability Conditions on a Non-Compact Calabi-Yau Threefold , 2005, math/0509048.
[21] Irving Reiner,et al. Methods of Representation Theory , 1981 .
[22] A. Schofield. TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .
[23] K. Bongartz. Algebras and Quadratic Forms , 1983 .
[24] Bernhard Keller,et al. Deriving DG categories , 1994 .
[25] L. Unger. Schur modules over wild, finite dimensional path algebras with three simple modules , 1990 .
[26] A. Björner,et al. Combinatorics of Coxeter Groups , 2005 .
[27] M. Auslander,et al. Almost split sequences in subcategories , 1981 .
[28] R. Y. Sharp. SYZYGIES (London Mathematical Society Lecture Note Series, 106) , 1986 .
[29] Maurice Auslander,et al. Rational singularities and almost split sequences , 1986 .
[30] Rigid modules over preprojective algebras , 2005, math/0503324.
[31] I. Reiten,et al. Skew group algebras in the representation theory of artin algebras , 1985 .
[32] G. Gonzalez-Sprinberg,et al. Construction géométrique de la correspondance de McKay , 1983 .
[33] T-structures on some local Calabi–Yau varieties , 2005, math/0502050.
[34] J. Verdier,et al. Des catégories dérivées des catégories abéliennes , 1996 .
[35] Idun Reiten,et al. CLUSTER MUTATION VIA QUIVER REPRESENTATIONS , 2004 .
[36] M. Kapranov,et al. Kleinian singularities, derived categories and Hall algebras , 1998 .
[37] Geoffrey Mason,et al. The Santa Cruz Conference on Finite Groups , 1981 .
[38] J. Humphreys. Reflection groups and coxeter groups , 1990 .
[39] Michel Van den Bergh. Three-dimensional flops and noncommutative rings , 2002 .
[40] Autoequivalences of derived categories on the minimal resolutions of An-singularities on surfaces , 2004, math/0409151.
[41] W. Rump. Non-commutative Cohen–Macaulay Rings☆ , 2001 .
[42] S. Goto,et al. Finite Modules of Finite Injective Dimension Over a Noetherian Algebra , 2001 .
[43] Raf Bocklandt. Graded Calabi Yau algebras of dimension 3 , 2006 .
[44] I. Reiten,et al. Coxeter functors without diagrams , 1979 .
[45] S. Fomin,et al. Cluster algebras II: Finite type classification , 2002, math/0208229.
[46] J. Herzog. Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln , 1978 .
[47] D. Happel,et al. On a Partial Order of Tilting Modules , 2005 .
[48] O. Iyama. τ-Categories I: Ladders , 2005 .
[49] I. Reiten,et al. Cluster tilting for one-dimensional hypersurface singularities , 2007, 0704.1249.
[50] I. Reiten,et al. Applications of contravariantly finite subcategories , 1991 .
[51] On triangulated orbit categories , 2005, math/0503240.
[52] Idun Reiten,et al. Noetherian hereditary abelian categories satisfying Serre duality , 2002 .
[53] D. Happel,et al. Almost complete tilting modules , 1989 .
[54] S. Goto,et al. Towards a theory of Bass numbers with application to Gorenstein algebras , 2002 .
[55] Amnon Yekutieli. Dualizing complexes over noncommutative graded algebras , 1992 .
[56] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[57] Y. Yoshino,et al. Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .
[58] Dieter Happel,et al. Binary polyhedral groups and Euclidean diagrams , 1980 .
[59] Den Bergh,et al. Non-commutative Crepant Resolutions , 2002 .
[60] Mark Ramras. Maximal orders over regular local rings of dimension two , 1969 .
[61] H. Foxby. Bounded complexes of flat modules , 1979 .
[62] A. Braun. On symmetric, smooth and Calabi–Yau algebras , 2007 .
[63] Roland Berger,et al. Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras , 2006, math/0610112.
[64] Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.
[65] Miles Reid,et al. Mukai implies McKay: the McKay correspondence as an equivalence of derived categories , 1999, math/9908027.
[66] O. Iyama. τ-Categories II: Nakayama Pairs and Rejective Subcategories , 2005 .
[67] Endre Süli,et al. Foundations of Computational Mathematics, Santander 2005 (London Mathematical Society Lecture Note Series) , 2006 .
[68] W. Bruns,et al. Cohen-Macaulay rings , 1993 .
[69] Andrei Zelevinsky,et al. Generalized associahedra via quiver representations , 2002, math/0205152.
[70] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[71] Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.
[72] Osamu Iyama,et al. Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories , 2004, math/0407052.
[73] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[74] A. Rudakov. THE MARKOV NUMBERS AND EXCEPTIONAL BUNDLES ON P , 1989 .
[75] O. Iyama. Auslander–Reiten theory revisited , 2008, 0803.2841.
[76] E. Kreines. Appendix to the paper by Dr. Amnon Yekutieli "Dualizing complexes, Morita equivalence, and the derived Picard group of a ring , 1999 .
[77] M. Artin,et al. Reflexive modules over rational double points , 1985 .
[78] Amnon Yekutieli,et al. Derived Picard Groups of Finite-Dimensional Hereditary Algebras , 1999, Compositio Mathematica.
[79] W. Rump. Non-commutative Regular Rings , 2001 .
[80] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[81] Ralf Schiffler,et al. Quivers with relations arising from clusters $(A_n$ case) , 2004 .
[82] Tilting theory and cluster combinatorics , 2004, math/0402054.