A Lévy-driven rainfall model with applications to futures pricing

[1]  A. Basse-O'Connor,et al.  Stochastic Integration on the Real Line , 2014 .

[2]  B. L. Cabrera,et al.  Pricing rainfall futures at the CME. , 2013 .

[3]  P. Brockwell,et al.  Integration of CARMA processes and spot volatility modelling , 2013 .

[4]  F. Benth,et al.  Modeling and Pricing in Financial Markets for Weather Derivatives , 2012 .

[5]  Wolfgang Härdle,et al.  The Implied Market Price of Weather Risk , 2012 .

[6]  Pavel Diko,et al.  Pricing precipitation based derivatives , 2005 .

[7]  M. Schweizer,et al.  Minimal entropy preserves the Lévy property: how and why , 2005 .

[8]  Peter K. Dunn,et al.  Occurrence and quantity of precipitation can be modelled simultaneously , 2004 .

[9]  Peter J. Brockwell,et al.  Representations of continuous-time ARMA processes , 2004, Journal of Applied Probability.

[10]  Christian Onof,et al.  Rainfall modelling using Poisson-cluster processes: a review of developments , 2000 .

[11]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[12]  D. Wilks Multisite generalization of a daily stochastic precipitation generation model , 1998 .

[13]  R. Chandler A spectral method for estimating parameters in rainfall models , 1997 .

[14]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[15]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[16]  Paul S. P. Cowpertwait,et al.  A generalized point process model for rainfall , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  G. A. Whitmore,et al.  Stochastic processes directed by randomized time , 1993, Journal of Applied Probability.

[18]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[19]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Valerie Isham,et al.  Some models for rainfall based on stochastic point processes , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  David A. Woolhiser,et al.  Stochastic daily precipitation models: 2. A comparison of distributions of amounts , 1982 .

[22]  Roger Stern,et al.  Fitting Models to Daily Rainfall Data , 1982 .

[23]  E. Chin,et al.  Modeling daily precipitation occurrence process with Markov Chain , 1977 .

[24]  Richard W. Katz,et al.  Precipitation as a Chain-Dependent Process , 1977 .

[25]  Robert Stelzer,et al.  Lévy-driven CARMA Processes , 2015 .

[26]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[27]  O. Barndorff-Nielsen Superposition of Ornstein--Uhlenbeck Type Processes , 2001 .

[28]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[29]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[30]  F Escher,et al.  On the probability function in the collective theory of risk , 1932 .