Extremal functions of forbidden multidimensional matrices

Pattern avoidance is a central topic in graph theory and combinatorics. Pattern avoidance in matrices has applications in computer science and engineering, such as robot motion planning and VLSI circuit design. A $d$-dimensional zero-one matrix $A$ avoids another $d$-dimensional zero-one matrix $P$ if no submatrix of $A$ can be transformed to $P$ by changing some ones to zeros. A fundamental problem is to study the maximum number of nonzero entries in a $d$-dimensional $n \times \cdots \times n$ matrix that avoids $P$. This maximum number, denoted by $f(n,P,d)$, is called the extremal function. We advance the extremal theory of matrices in two directions. The methods that we use come from combinatorics, probability, and analysis. Firstly, we obtain non-trivial lower and upper bounds on $f(n,P,d)$ when $n$ is large for every $d$-dimensional block permutation matrix $P$. We establish the tight bound $\Theta(n^{d-1})$ on $f(n,P,d)$ for every $d$-dimensional tuple permutation matrix $P$. This tight bound has the lowest possible order that an extremal function of a nontrivial matrix can ever achieve. Secondly, we show that $f(n,P,d)$ is super-homogeneous for a class of matrices $P$. We use this super-homogeneity to show that the limit inferior of the sequence $\{ {f(n,P,d) \over n^{d-1}}\}$ has a lower bound $2^{\Omega(k^{1/ d})}$ for a family of $k \times \cdots \times k$ permutation matrices $P$. We also improve the upper bound on the limit superior from $2^{O(k \log k)}$ to $2^{O(k)}$ for all $k \times \cdots \times k$ permutation matrices and show that the new upper bound also holds for tuple permutation matrices.

[1]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[2]  Sergey Kitaev,et al.  Patterns in Permutations and Words , 2011, Monographs in Theoretical Computer Science. An EATCS Series.

[3]  Jacob Fox,et al.  Stanley-Wilf limits are typically exponential , 2013, ArXiv.

[4]  Ervin Györi,et al.  An Extremal Problem on Sparse 0-1 Matrices , 1991, SIAM J. Discret. Math..

[5]  Einar Steingrímsson,et al.  Some open problems on permutation patterns , 2012, Surveys in Combinatorics.

[6]  Jesse T. Geneson,et al.  Extremal functions of forbidden double permutation matrices , 2009, J. Comb. Theory, Ser. A.

[7]  R. Stanley Increasing and Decreasing Subsequences , 2006 .

[8]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[9]  Po-Shen Loh,et al.  Probabilistic Methods in Combinatorics , 2009 .

[10]  Martin Klazar,et al.  Extensions of the linear bound in the Füredi-Hajnal conjecture , 2007, Adv. Appl. Math..

[11]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[12]  Zoltán Füredi,et al.  Davenport-Schinzel theory of matrices , 1992, Discret. Math..

[13]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[14]  Martin Klazar,et al.  The Füredi-Hajnal Conjecture Implies the Stanley-Wilf Conjecture , 2000 .

[15]  Chak-Kuen Wong,et al.  Rectilinear Paths Among Rectilinear Obstacles , 1992, Discret. Appl. Math..

[16]  Miklós Bóna Combinatorics of Permutations, Second Edition , 2012, Discrete mathematics and its applications.

[17]  Josef Cibulka,et al.  On constants in the Füredi-Hajnal and the Stanley-Wilf conjecture , 2009, J. Comb. Theory, Ser. A.

[18]  Balázs Keszegh,et al.  On linear forbidden submatrices , 2009, J. Comb. Theory, Ser. A.

[19]  Toufik Mansour,et al.  Combinatorics of Compositions and Words: Solutions Manual , 2009 .

[20]  János Pach,et al.  Forbidden paths and cycles in ordered graphs and matrices , 2006 .

[21]  Zoltán Füredi,et al.  The maximum number of unit distances in a convex n-gon , 1990, J. Comb. Theory, Ser. A.

[22]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[23]  Saharon Shelah,et al.  Almost isometric embedding between metric spaces , 2006 .

[24]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[25]  Adam Hesterberg,et al.  Extremal functions of excluded tensor products of permutation matrices , 2012, Discret. Math..

[26]  T. Mansour,et al.  Combinatorics of Compositions and Words , 2009 .

[27]  Joseph S. B. Mitchell,et al.  Shortest Rectilinear Paths Among Obstacles , 1987 .