Exploiting planarity in separation routines for the symmetric traveling salesman problem

At present, the most successful approach for solving large-scale instances of the Symmetric Traveling Salesman Problem to optimality is branch-and-cut. The success of branch-and-cut is due in large part to the availability of effective separation procedures; that is, routines for identifying violated linear constraints. For two particular classes of constraints, known as comb and domino-parity constraints, it has been shown that separation becomes easier when the underlying graph is planar. We continue this line of research by showing how to exploit planarity in the separation of three other classes of constraints: subtour elimination, 2-matching and simple domino-parity constraints.

[1]  Martin Grötschel,et al.  Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..

[2]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[3]  Wei-Kuan Shih,et al.  Unifying Maximum Cut and Minimum Cut of a Planar Graph , 1990, IEEE Trans. Computers.

[4]  Andrea Lodi,et al.  Polynomial-Time Separation of a Superclass of Simple Comb Inequalities , 2006, Math. Oper. Res..

[5]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[6]  Vasek Chvátal,et al.  Edmonds polytopes and weakly hamiltonian graphs , 1973, Math. Program..

[7]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[8]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[9]  R. Bixby,et al.  On the Solution of Traveling Salesman Problems , 1998 .

[10]  Robert Carr,et al.  Separating Clique Trees and Bipartition Inequalities Having a Fixed Number of Handles and Teeth in Polynomial Time , 1997, Math. Oper. Res..

[11]  Danupon Nanongkai,et al.  A deterministic near-linear time algorithm for finding minimum cuts in planar graphs , 2004, SODA '04.

[12]  Denis Naddef The Domino Inequalities for the Symmetric Traveling Salesman Problem , 2004, The Sharpest Cut.

[13]  Robert Carr Separating over Classes of TSP Inequalities Defined by 0 Node-Lifting in Polynominal Time , 1996, IPCO.

[14]  Denis Naddef,et al.  Polyhedral Theory and Branch-and-Cut Algorithms for the Symmetric TSP , 2007 .

[15]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.

[16]  Éva Tardos,et al.  Separating Maximally Violated Comb Inequalities in Planar Graphs , 1999, Math. Oper. Res..

[17]  Gerhard Reinelt,et al.  Traveling salesman problem , 2012 .

[18]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[19]  Gerhard J. Woeginger,et al.  Exact algorithms for the Hamiltonian cycle problem in planar graphs , 2006, Oper. Res. Lett..

[20]  Martin Grötschel,et al.  A cutting plane algorithm for minimum perfect 2-matchings , 1987, Computing.

[21]  Some Comments on Existence and Uniqueness Theorems in Applied Mathematics with an Application to Thin Airfoil Theory , 1968 .

[22]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .

[23]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[24]  M. R. Rao,et al.  Odd Minimum Cut-Sets and b-Matchings , 1982, Math. Oper. Res..

[25]  Toshihide Ibaraki,et al.  Implementing an efficient minimum capacity cut algorithm , 1994, Math. Program..

[26]  Robert D. Carr Separation Algorithms for Classes of STSP Inequalities Arising from a New STSP Relaxation , 2004, Math. Oper. Res..

[27]  Denis Naddef,et al.  The domino inequalities: facets for the symmetric traveling salesman polytope , 2003, Math. Program..

[28]  Martin Grötschel The Sharpest Cut , 2004, MPS-SIAM series on optimization.

[29]  Adam N. Letchford,et al.  A fast algorithm for minimum weight odd cuts and circuits in planar graphs , 2005 .

[30]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[31]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[32]  Sally Cockburn,et al.  On the domino-parity inequalities for the STSP , 2007, Math. Program..

[33]  Martin Grötschel,et al.  On the symmetric travelling salesman problem II: Lifting theorems and facets , 1979, Math. Program..

[34]  Gerhard Reinelt,et al.  A Faster Exact Separation Algorithm for Blossom Inequalities , 2004, IPCO.

[35]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[36]  William J. Cook,et al.  A Study of Domino-Parity and k-Parity Constraints for the TSP , 2005, IPCO.

[37]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[38]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[39]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[40]  Adam N. Letchford Separating a Superclass of Comb Inequalities in Planar Graphs , 2000, Math. Oper. Res..

[41]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[42]  Éva Tardos,et al.  Separating Maximally Violated Comb Inequalities in Planar Graphs , 1996, IPCO.

[43]  Adam N. Letchford,et al.  A fast algorithm for minimum weight odd circuits and cuts in planar graphs , 2005, Oper. Res. Lett..

[44]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[45]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[46]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.

[47]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[48]  Philip N. Klein,et al.  A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.

[49]  Andrea Lodi,et al.  Polynomial-Time Separation of Simple Comb Inequalities , 2002, IPCO.