Topo-Bathymetric LiDAR for Monitoring River Morphodynamics and Instream Habitats - A Case Study at the Pielach River

Airborne LiDAR Bathymetry (ALB) has been rapidly evolving in recent years and now allows fluvial topography to be mapped in high resolution (>20 points/m2) and height accuracy (<10 cm) for both the aquatic and the riparian area. This article presents methods for enhanced modeling and monitoring of instream meso- and microhabitats based on multitemporal data acquisition. This is demonstrated for a near natural reach of the Pielach River, with data acquired from April 2013 to October 2014, covering two flood events. In comparison with topographic laser scanning, ALB requires a number of specific processing steps. We present, firstly, a novel approach for modeling the water surface in the case of sparse water surface echoes and, secondly, a strategy for improved filtering and modeling of the Digital Terrain Model of the Watercourse (DTM-W). Based on the multitemporal DTM-W we discuss the massive changes of the fluvial topography exhibiting deposition/erosion of 103 m3 caused by the 30-years flood event in May 2014. Furthermore, for the first time, such a high-resolution data source is used for monitoring of hydro-morphological units (mesohabitat scale) including the consequences for the target fish species nase (Chondrostoma nasus, microhabitat scale). The flood events caused a spatial displacement of the hydro-morphological units but did not effect their overall frequency distribution, which is considered an important habitat feature as it documents resilience against disturbances.

[1]  D. Montgomery,et al.  Channel-reach morphology in mountain drainage basins , 1997 .

[2]  D. Raff,et al.  Assessing the ability of airborne LiDAR to map river bathymetry , 2008 .

[3]  Colin D. Rennie,et al.  Mapping Water and Sediment Flux Distributions in Gravel‐Bed Rivers Using ADCPs , 2012 .

[4]  John K. Horne,et al.  Spatial variance in ecology , 1995 .

[5]  Michael K. Young,et al.  A hierarchical approach to classifying stream habitat features , 1993 .

[6]  Håkan Olsson,et al.  Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data , 2012 .

[7]  Norbert Pfeifer,et al.  Optimisation of LiDAR derived terrain models for river flow modelling , 2008 .

[8]  Paul E. LaRocque,et al.  Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar , 1994, Other Conferences.

[9]  David J. Mulla,et al.  Geostatistical Tools for Modeling and Interpreting Ecological Spatial Dependence , 1992 .

[10]  J. Poesen,et al.  Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology , 2009 .

[11]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[12]  Günther Unfer,et al.  Impact of channel bar form and grain size variability on estimated stranding risk of juvenile brown trout during hydropeaking , 2014 .

[13]  Damià Vericat,et al.  Through‐water terrestrial laser scanning of gravel beds at the patch scale , 2012 .

[14]  C. Legleiter Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry , 2012 .

[15]  R. E. Thomas,et al.  Quantification of braided river channel change using archival digital image analysis , 2010 .

[16]  David Ryan,et al.  Habitat Classification of Temperate Marine Macroalgal Communities Using Bathymetric LiDAR , 2014, Remote. Sens..

[17]  Heiko Apel,et al.  Flood risk analyses—how detailed do we need to be? , 2009 .

[18]  W. Rodi,et al.  3D NUMERICAL MODELING OF FLOW AND SEDIMENT TRANSPORT IN OPEN CHANNELS , 2000 .

[19]  Juha Hyyppä,et al.  FACTORS AFFECTING THE QUALITY OF DTM GENERATION IN FORESTED AREAS , 2005 .

[20]  Carl J. Legleiter,et al.  Mapping River Bathymetry With a Small Footprint Green LiDAR: Applications and Challenges 1 , 2013 .

[21]  Helmut Habersack,et al.  The river-scaling concept (RSC): a basis for ecological assessments , 2000 .

[22]  David M. Harper,et al.  Use of ‘functional habitats’ to link ecology with morphology and hydrology in river rehabilitation , 1999 .

[23]  Kent Hardmeyer,et al.  Using Risk-Based Analysis and Geographic Information Systems to Assess Flooding Problems in an Urban Watershed in Rhode Island , 2007, Environmental management.

[24]  Vittorio E. Brando,et al.  Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality , 2003, IEEE Trans. Geosci. Remote. Sens..

[25]  Camillo Ressl,et al.  AUTOMATIC BREAK LINE DETERMINATION FOR THE GENERATION OF A DTM ALONG THE RIVER MAIN , 2009 .

[26]  James H. Lambert,et al.  Input-Output Economic Evaluation of System of Levees , 1998 .

[27]  J. Brasington,et al.  Hyperscale terrain modelling of braided rivers: fusing mobile terrestrial laser scanning and optical bathymetric mapping , 2014 .

[28]  Mario Aristide Lenzi,et al.  Analysis of Morphological Processes in a Disturbed Gravel-Bed River (Piave River): Integration of LiDAR Data and Colour Bathymetry , 2014 .

[29]  Stephen E. Darby,et al.  Linking geomorphic changes to salmonid habitat at a scale relevant to fish , 2010 .

[30]  李幼升,et al.  Ph , 1989 .

[31]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[32]  Camillo RESSLa,et al.  QUALITY CHECKING OF ALS PROJECTS USING STATISTICS OF STRIP DIFFERENCES , 2008 .

[33]  H. Habersack,et al.  Morphodynamics of a 1000‐year flood in the Kamp River, Austria, and impacts on floodplain morphology , 2009 .

[34]  Daniele Tonina,et al.  Effects of bathymetric lidar errors on flow properties predicted with a multi‐dimensional hydraulic model , 2014 .

[35]  G. Heritage,et al.  Towards a protocol for laser scanning in fluvial geomorphology , 2007 .

[36]  Gottfried Mandlburger,et al.  Estimating changes of riverine landscapes and riverbeds by using airborne LIDAR data and river cross - sections , 2011 .

[37]  J. Brasington,et al.  Monitoring and modelling morphological change in a braided gravel‐bed river using high resolution GPS‐based survey , 2000 .

[38]  William E. Carter,et al.  Early Results of Simultaneous Terrain and Shallow Water Bathymetry Mapping Using a Single-Wavelength Airborne LiDAR Sensor , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[39]  Christopher Parrish,et al.  New Topographic-Bathymetric Lidar Technology for Post-Sandy Mapping , 2014 .

[40]  Jens M. Turowski,et al.  Start and end of bedload transport in gravel‐bed streams , 2011 .

[41]  M. Schaepman,et al.  Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data , 2014 .

[42]  K. Kraus Photogrammetry: Geometry from Images and Laser Scans , 2007 .

[43]  Norbert Pfeifer,et al.  Analyzing near water surface penetration in laser bathymetry – A case study at the River Pielach , 2013 .

[44]  Wallace P. Erickson,et al.  Resource Selection by Animals , 2002, Springer Netherlands.

[45]  Norbert Pfeifer,et al.  Experimental evaluation of ALS point cloud ground extraction tools over different terrain slope and land-cover types , 2014 .

[46]  C. Frissell,et al.  A hierarchical framework for stream habitat classification: Viewing streams in a watershed context , 1986 .

[47]  David C. Schneider,et al.  NEW TECHNIQUE DESCRIBING SPATIAL SCALING AND HABITAT SELECTION IN RIVERINE HABITATS , 1998 .

[48]  Norbert Pfeifer,et al.  RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA , 2012 .

[49]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[50]  J. Brasington,et al.  Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets , 2009 .

[51]  Toon Spanhove,et al.  Can remote sensing estimate fine-scale quality indicators of natural habitats? , 2012 .

[52]  Günther Unfer,et al.  Variability of mesohabitat characteristics in riffle‐pool reaches: Testing an integrative evaluation concept (FGC) for MEM‐application , 2011 .

[53]  W. Marcus,et al.  Optical remote mapping of rivers at sub‐meter resolutions and watershed extents , 2008 .

[54]  C. Briese,et al.  Archaeological prospection of forested areas using full-waveform airborne laser scanning , 2008 .

[55]  Caspar A. Mücher,et al.  Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward , 2011 .

[56]  Howard B. Stauffer,et al.  WHAT CAN HABITAT PREFERENCE MODELS TELL US? TESTS USING A VIRTUAL TROUT POPULATION , 2003 .

[57]  Norbert Pfeifer,et al.  Georeferenced Point Clouds: A Survey of Features and Point Cloud Management , 2013, ISPRS Int. J. Geo Inf..

[58]  Alan M. Friedlander,et al.  Using bathymetric lidar to define nearshore benthic habitat complexity: Implications for management of reef fish assemblages in Hawaii , 2008 .

[59]  Uwe Soergel,et al.  Opportunities of Airborne Laser Bathymetry for the Monitoring of the Sea Bed on the Baltic Sea Coast , 2013 .

[60]  Paul E. LaRocque,et al.  MEETING THE ACCURACY CHALLENGE IN AIRBORNE LIDAR BATHYMETRY , 2000 .

[61]  Michael Förster,et al.  Remote sensing for mapping natural habitats and their conservation status - New opportunities and challenges , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[62]  J. Rosenfeld,et al.  Assessing the Habitat Requirements of Stream Fishes: An Overview and Evaluation of Different Approaches , 2003 .

[63]  N. Pfeifer,et al.  DERIVATION OF DIGITAL TERRAIN MODELS IN THE SCOP++ ENVIRONMENT , 2001 .

[64]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[65]  B. Merz,et al.  Comparative Risk Assessments for the City of Cologne – Storms, Floods, Earthquakes , 2006 .

[66]  Gottfried Mandlburger,et al.  Local accuracy measures for digital terrain models , 2006 .

[67]  R. Lawrence,et al.  Spectrally based remote sensing of river bathymetry , 2009 .

[68]  Mark Gard,et al.  Modeling changes in salmon spawning and rearing habitat associated with river channel restoration , 2006 .

[69]  Yongjun Zhang,et al.  Direct georeferencing of airborne LiDAR data in national coordinates , 2013 .

[70]  J. Boardman,et al.  High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams , 2003 .

[71]  J. Brasington,et al.  Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport , 2003 .

[72]  Andreas Melcher,et al.  The importance of structural features for spawning habitat of nase Chondrostoma nasus (L.) and barbel Barbus barbus (L.) in a pre-Alpine river , 2010 .

[73]  George Vosselman,et al.  Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds , 2004 .

[74]  M. Wernand,et al.  On the history of the Secchi disc , 2010 .

[75]  Katumi Musiake,et al.  An application of a flood risk analysis system for impact analysis of a flood control plan in a river basin , 2006 .

[76]  J. Brasington,et al.  Analysing laser‐scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics , 2009 .

[77]  Mario Aristide Lenzi,et al.  Short-term geomorphic analysis in a disturbed fluvial environment by fusion of LiDAR, colour bathymetry and dGPS surveys , 2014 .

[78]  Joseph M. Wheaton,et al.  Use of habitat heterogeneity in salmonid spawning habitat rehabilitation design , 2004 .

[79]  S. Schmutz,et al.  Assessing the efficiency of connectivity measures with regard to the EU-Water Framework Directive in a Danube-tributary system , 2008, Hydrobiologia.

[80]  Gottfried Mandlburger,et al.  Hydraulically related hydro‐morphological units: description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input , 2009 .

[81]  Norbert Pfeifer,et al.  OPALS - A framework for Airborne Laser Scanning data analysis , 2014, Comput. Environ. Urban Syst..

[82]  Andreas Ullrich,et al.  Online waveform processing for demanding target situations , 2014, Defense + Security Symposium.

[83]  K. Tockner,et al.  An extension of the flood pulse concept. , 2000 .

[84]  S. Lane,et al.  Editorial: the generation of high quality topographic data for hydrology and geomorphology: new data sources, new applications and new problems , 2003 .

[85]  Derek D. Lichti,et al.  Rigorous approach to bore-sight self-calibration in airborne laser scanning , 2006 .

[86]  Joseph M. Wheaton,et al.  Sediment budget for salmonid spawning habitat rehabilitation in a regulated river , 2006 .

[87]  Robert C. Hilldale,et al.  Using Bathymetric LiDAR and a 2-D Hydraulic Model to Identify Aquatic River Habitat , 2007 .