Approximate Cross-validated Mean Estimates for Bayesian Hierarchical Regression Models

We introduce a novel procedure for obtaining cross-validated predictive estimates for Bayesian hierarchical regression models (BHRMs). Bayesian hierarchical models are popular for their ability to model complex dependence structures and provide probabilistic uncertainty estimates, but can be computationally expensive to run. Cross-validation (CV) is therefore not a common practice to evaluate the predictive performance of BHRMs. Our method circumvents the need to re-run computationally costly estimation methods for each cross-validation fold and makes CV more feasible for large BHRMs. By conditioning on the variance-covariance parameters, we shift the CV problem from probability-based sampling to a simple and familiar optimization problem. In many cases, this produces estimates which are equivalent to full CV. We provide theoretical results and demonstrate its efficacy on publicly available data and in simulations.

[1]  Duncan Lee,et al.  A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London. , 2014, Spatial and spatio-temporal epidemiology.

[2]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[3]  Sophia Rabe-Hesketh,et al.  Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods , 2018, Psychometrika.

[4]  R. Kohn,et al.  Speeding Up MCMC by Efficient Data Subsampling , 2014, Journal of the American Statistical Association.

[5]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[6]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[7]  Aki Vehtari,et al.  GPstuff: Bayesian modeling with Gaussian processes , 2013, J. Mach. Learn. Res..

[8]  James G. Scott,et al.  On the half-cauchy prior for a global scale parameter , 2011, 1104.4937.

[9]  D. Rubin Estimation in Parallel Randomized Experiments , 1981 .

[10]  Ole Winther,et al.  Bayesian Leave-One-Out Cross-Validation Approximations for Gaussian Latent Variable Models , 2014, J. Mach. Learn. Res..

[11]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[12]  Yuhong Yang,et al.  Nonparametric Regression with Correlated Errors , 2001 .

[13]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[14]  Shi Qiu,et al.  Approximating cross-validatory predictive evaluation in Bayesian latent variable models with integrated IS and WAIC , 2014, Stat. Comput..

[15]  Hong Chang,et al.  Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods , 1992 .

[16]  Max Welling,et al.  Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget , 2013, ICML 2014.

[17]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[18]  J. Gabry,et al.  Bayesian Applied Regression Modeling via Stan , 2016 .

[19]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[20]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[21]  Michael J. Daniels,et al.  A NOTE ON FIRST-STAGE APPROXIMATION IN TWO-STAGE HIERARCHICAL MODELS* , 2016 .

[22]  Arnaud Doucet,et al.  On Markov chain Monte Carlo methods for tall data , 2015, J. Mach. Learn. Res..

[23]  D J Spiegelhalter,et al.  Approximate cross‐validatory predictive checks in disease mapping models , 2003, Statistics in medicine.

[24]  A. Raftery,et al.  Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .

[25]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[26]  Duncan Lee,et al.  Spatio-Temporal Areal Unit Modeling in R with Conditional Autoregressive Priors Using the CARBayesST Package , 2018 .

[27]  B. Efron,et al.  Data Analysis Using Stein's Estimator and its Generalizations , 1975 .

[28]  Alan E. Gelfand,et al.  Model Determination using sampling-based methods , 1996 .

[29]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[30]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .