Ant Colony Estimator: An intelligent particle filter based on ACOR

Based on Ant Colony Optimization for Continuous Domains (ACO"R) and Particle Filter (PF), an intelligent particle filter, namely Ant Colony Estimator (ACE), is proposed in this paper. Modeling and search abilities of ACO"R are incorporated into the standard particle filtering framework to improve the estimation performance and overcome the well-known problems of Degeneracy and Sample Impoverishment. ACO"R operators implicitly use measurement and previous particle information, to generate probably better particles. Simulation results are given for two examples and ACE is compared to other types of particle filters. The obtained results confirm the efficiency and applicability of ACE.

[1]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[2]  Takashi Matsumoto,et al.  Adaptation and Change Detection With a Sequential Monte Carlo Scheme , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[4]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[5]  Jean-Christophe Nebel,et al.  Tracking Human Position and Lower Body Parts Using Kalman and Particle Filters Constrained by Human Biomechanics , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Zixing Cai,et al.  Evolutionary Particle Filter for Robust Simultaneous Localization and Map Building with Laser Range Finder , 2008, 2008 Fourth International Conference on Natural Computation.

[7]  Jihong Zhu,et al.  A novel estimator with moving ants , 2009, Simul. Model. Pract. Theory.

[8]  M. Nowak,et al.  Virus dynamics: Mathematical principles of immunology and virology , 2001 .

[9]  Yan Meng,et al.  Swarming particles with multi-feature model for free-selected object tracking , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[11]  Euntai Kim,et al.  A New Evolutionary Particle Filter for the Prevention of Sample Impoverishment , 2009, IEEE Transactions on Evolutionary Computation.

[12]  Liu Jing,et al.  Interacting MCMC particle filter for tracking maneuvering target , 2010, Digit. Signal Process..

[13]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  M. Nowak,et al.  Specific therapy regimes could lead to long-term immunological control of HIV. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[17]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[18]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[19]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[20]  DorigoM.,et al.  Ant colony system , 1997 .

[21]  K. Uosaki,et al.  Evolution Strategies Based Particle Filters for Fault Detection , 2007, 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing.

[22]  Anthony G. Constantinides,et al.  Audio–Visual Active Speaker Tracking in Cluttered Indoors Environments , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  Hua Han,et al.  An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking , 2011, Comput. Math. Appl..

[24]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[25]  Hamed Mojallali,et al.  State estimation of nonlinear stochastic systems using a novel meta-heuristic particle filter , 2012, Swarm Evol. Comput..

[26]  Chung Choo Chung,et al.  Optimized structured treatment interruption for HIV therapy and its performance analysis on controllability , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[27]  Ngai Ming Kwok,et al.  Evolutionary particle filter: re-sampling from the genetic algorithm perspective , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Matteo Bianchi,et al.  Modelling and control of HIV dynamics , 2008, Comput. Methods Programs Biomed..

[29]  Hamid Khaloozadeh,et al.  Open- and Closed-Loop Multiobjective Optimal Strategies for HIV Therapy Using NSGA-II , 2011, IEEE Transactions on Biomedical Engineering.

[30]  E. D. Taillard,et al.  Ant Systems , 1999 .

[31]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Zheng Fang,et al.  A Particle Swarm Optimized Particle Filter for Nonlinear System State Estimation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[33]  Fei Wang,et al.  A Real-Time Moving Ant Estimator for Bearings-Only Tracking , 2010, ICSI.

[34]  Zixing Cai,et al.  Robust Position Tracking for Mobile Robots with Adaptive Evolutionary Particle Filter , 2007, Third International Conference on Natural Computation (ICNC 2007).

[35]  T. Higuchi Monte carlo filter using the genetic algorithm operators , 1997 .

[36]  Toshiharu Hatanaka,et al.  Evolution strategies based particle filters for state and parameter estimation on nonlinear models , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[37]  Guoliang Fan,et al.  Dual Gait Generative Models for Human Motion Estimation From a Single Camera , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[38]  Nanning Zheng,et al.  Tracking Multiple Visual Targets via Particle-Based Belief Propagation , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[39]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[40]  PanticM.,et al.  Dynamics of facial expression , 2006 .

[41]  Maja Pantic,et al.  Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  Franz Pernkopf,et al.  Tracking of Multiple Targets Using Online Learning for Reference Model Adaptation , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[44]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[45]  Li Qian,et al.  A swarm intelligence optimization for particle filter , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[46]  Zhiyu Xiang,et al.  Enhancing particle swarm optimization based particle filter tracker , 2006 .

[47]  Ryan Zurakowski,et al.  A model predictive control based scheduling method for HIV therapy. , 2006, Journal of theoretical biology.