Adaptive estimation in reproducing kernel Hilbert spaces

This paper introduces a novel framework for the study of adaptive or online estimation problems for a common class of nonlinear systems governed by ordinary differential equations (ODEs) on ℝd. In contrast to most conventional strategies for ODEs, the approach here embeds the estimate of the unknown nonlinear function appearing in the plant in a reproducing kernel Hilbert space (RKHS), H. The nonlinear adaptive estimation problem is then cast as a time-varying estimation problem in the product space ℝd × H of finite dimensional state estimates and infinite dimensional estimates of the unknown function. The adaptive estimation problem thereby constitutes a type of distributed parameter system, even though the original system is a collection of ODEs. The unknown function that lies in the RKHS is the distributed parameter. This paper derives (1) the sufficient conditions for the existence and uniqueness of solutions, (2) the stability and convergence of the state estimation error, and (3) the convergence of finite dimensional approximate solutions to the solution on the infinite dimensional state space. The new formulation provides a succinct and direct way of rigorously posing adaptive estimation problems using bases that are amenable to scattered approximation. A numerical example on adaptive estimation of road or terrain maps is presented to illustrate the convergence of the function estimates derived in this paper.

[1]  Petr Mandl,et al.  On the consistency of a least squares identification procedure , 1992, Kybernetika.

[2]  Kumpati S. Narendra,et al.  Stable Adaptive Schemes for System Identification and Control-Part I , 1974, IEEE Trans. Syst. Man Cybern..

[3]  Sabine Fenstermacher,et al.  Estimation Techniques For Distributed Parameter Systems , 2016 .

[4]  J. Farrell,et al.  Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches (Adaptive and Learning Systems for Signal Processing, Communications and Control Series) , 2006 .

[5]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[6]  K. Narendra,et al.  On the Stability of Nonautonomous Differential Equations $\dot x = [A + B(t)]x$, with Skew Symmetric Matrix $B(t)$ , 1977 .

[7]  F. J. Narcowich,et al.  Persistency of Excitation in Identification Using Radial Basis Function Approximants , 1995 .

[8]  I. G. Rosen,et al.  On the Persistence of Excitation in the Adaptive Estimation of Distributed Parameter Systems , 1993, 1993 American Control Conference.

[9]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[10]  Michael A. Demetriou,et al.  Adaptive identification of second-order distributed parameter systems , 1994 .

[11]  Michael A. Demetriou,et al.  On the persistence of excitation in the adaptive estimation of distributed parameter systems , 1994, IEEE Trans. Autom. Control..

[12]  Ronald A. DeVore,et al.  Approximation Methods for Supervised Learning , 2006, Found. Comput. Math..

[13]  Tyrone E. Duncan,et al.  Adaptive Boundary and Point Control of Linear Stochastic Distributed Parameter Systems , 1994 .

[14]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[15]  Jay A. Farrell,et al.  Tracking control of nonaffine systems: A self-organizing approximation approach , 2008, 2008 American Control Conference.

[16]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[17]  Tyrone E. Duncan,et al.  Adaptive control of linear delay time systems , 1988 .

[18]  Tyrone E. Duncan,et al.  Adaptive control of linear stochastic evolution systems , 1991 .

[19]  Michael A. Demetriou,et al.  Model Reference Adaptive Control of Distributed Parameter Systems , 1998 .

[20]  Michael A. Demetriou,et al.  On-Line Parameter Estimation for Infinite-Dimensional Dynamical Systems , 1997 .