Region-based template deformation and masking for eye-feature extraction and description

We propose an improved method for eye-feature extraction, descriptions, and tracking using deformable templates. Some existing algorithms are exploited to locate the initial position of eye features and then deformable templates are used for extracting and describing the eye features. Rather than using original energy minimization for matching the templates, the region-based approach is proposed for template deformation. Based on the region properties, the new strategy avoids problems such as template shrinking, adjusting the weights of energy terms, failure of orientation adjustment due to some exceptional cases. Our strategies are also coupled with Canny edge operator to give a new back-end processing. By integrating the local edge information from the edge detection and the global collector from our region-based template deformation, this processing stage can generate accurate eye-feature descriptions. Finally, the template deformation process is applied to tracking eye features.

[1]  Peter W. Hallinan Recognizing human eyes , 1991, Optics & Photonics.

[2]  Irfan Essa,et al.  Tracking facial motion , 1994, Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects.

[3]  D. J. Myers,et al.  Automatic location of visual features by a system of multilayered perceptrons , 1992 .

[4]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[5]  Timothy F. Cootes,et al.  Automatic tracking, coding and reconstruction of human faces, using flexible appearance models , 1994 .

[6]  James S. Duncan,et al.  Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  PAUL D. SAMPSON,et al.  Fitting conic sections to "very scattered" data: An iterative refinement of the bookstein algorithm , 1982, Comput. Graph. Image Process..

[8]  F. Bookstein Fitting conic sections to scattered data , 1979 .

[9]  Alex Pentland,et al.  Face recognition using view-based and modular eigenspaces , 1994, Optics & Photonics.

[10]  Nigel W. Bond,et al.  A new series of slides depicting facial expressions of affect: A comparison with the pictures of facial affect series , 1993 .

[11]  Alice J. O'Toole,et al.  Connectionist models of face processing: A survey , 1994, Pattern Recognit..

[12]  Larry S. Davis,et al.  Recognizing Human FACIAL EXPRESSION , 1994 .

[13]  L YuilleAlan,et al.  Feature extraction from faces using deformable templates , 1992 .

[14]  Hanqi Zhuang,et al.  On improving eye feature extraction using deformable templates , 1994, Pattern Recognit..

[15]  Ian Craw,et al.  Automatic extraction of face-features , 1987, Pattern Recognit. Lett..

[16]  Neil Gershenfeld,et al.  MIT-Media Lab , 1991, ICMC.

[17]  Marie-Odile Berger Snake growing , 1990, ECCV.

[18]  Chung-Lin Huang,et al.  Human Face Recognition from A Single Front View , 1992, Int. J. Pattern Recognit. Artif. Intell..

[19]  Richard Szeliski,et al.  Tracking with Kalman snakes , 1993 .

[20]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[21]  D CohenLaurent On active contour models and balloons , 1991 .

[22]  Petros Maragos,et al.  Tutorial On Advances In Morphological Image Processing And Analysis , 1986, Other Conferences.

[23]  Xiaobo Li,et al.  Towards a system for automatic facial feature detection , 1993, Pattern Recognit..

[24]  Rama Chellappa,et al.  A feature based approach to face recognition , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  George C. Stockman,et al.  Controlling a computer via facial aspect , 1995, IEEE Trans. Syst. Man Cybern..

[27]  Alan L. Yuille,et al.  Deformable templates , 1993 .

[28]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[29]  David Beymer,et al.  Face recognition under varying pose , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[30]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[31]  Hanqi Zhuang,et al.  Corner detection by a cost minimization approach , 1993, Pattern Recognit..

[32]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Ashok Samal,et al.  Automatic recognition and analysis of human faces and facial expressions: a survey , 1992, Pattern Recognit..

[34]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[36]  Niels da Vitoria Lobo,et al.  Age Classification from Facial Images , 1999, Comput. Vis. Image Underst..

[37]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..