Inverse Filtering Design Using a Minimal-Phase Target Function from Regularization

Inverse filtering methods commonly use amplitude regularization as a technique to limit the amount of work done by the inverse filter. The amount of regularization needed must be carefully selected so that the audio quality is not degraded. This paper introduces a method of using the magnitude of the regularization to design a target/desired response in which the phase response can be arbitrarily chosen. By choosing a minimum-phase response, one can reduce any pre-response in the corrected signal that is introduced by the regularization. A phase response that consists of a frequency-dependent mixture of minimumand zero-phase components is also introduced. Informal listening tests were performed to verify the effectiveness of the new method.