Functional elements demarcated by histone modifications in breast cancer cells.

[1]  Ru-Fang Yeh,et al.  TRPS1 Targeting by miR-221/222 Promotes the Epithelial-to-Mesenchymal Transition in Breast Cancer , 2011, Science Signaling.

[2]  B. van Steensel,et al.  Chromatin: constructing the big picture , 2011, The EMBO journal.

[3]  P. Ozretić,et al.  Tumor markers in breast cancer--evaluation of their clinical usefulness. , 2011, Collegium antropologicum.

[4]  J. Whetstine,et al.  Chromatin landscape , 2011, Epigenetics.

[5]  B. Bernstein,et al.  Charting histone modifications and the functional organization of mammalian genomes , 2011, Nature Reviews Genetics.

[6]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[7]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[8]  Raymond K. Auerbach,et al.  Mapping accessible chromatin regions using Sono-Seq , 2009, Proceedings of the National Academy of Sciences.

[9]  W. Gradishar,et al.  New Molecular Classifications of Breast Cancer , 2009, CA: a cancer journal for clinicians.

[10]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[11]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[12]  R. Marmorstein,et al.  Histone modifying enzymes: structures, mechanisms, and specificities. , 2009, Biochimica et biophysica acta.

[13]  Pang-Kuo Lo,et al.  Epigenomics and breast cancer. , 2008, Pharmacogenomics.

[14]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[15]  Dustin E. Schones,et al.  Genome-wide approaches to studying chromatin modifications , 2008, Nature Reviews Genetics.

[16]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[17]  Kornelia Polyak,et al.  Breast cancer: origins and evolution. , 2007, The Journal of clinical investigation.

[18]  D. A. Schwartz,et al.  Improving Grant Application Peer Review for the NIEHS , 2006, Environmental health perspectives.

[19]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[20]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[21]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[22]  Keji Zhao,et al.  Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. , 2006, Genome research.

[23]  R. Trievel,et al.  Histone-modifying enzymes: encrypting an enigmatic epigenetic code. , 2006, Current opinion in structural biology.

[24]  Suresh Cuddapah,et al.  The genomic landscape of histone modifications in human T cells , 2006, Proceedings of the National Academy of Sciences.

[25]  M. Nakao,et al.  CTCF-dependent chromatin insulator is linked to epigenetic remodeling. , 2006, Molecular cell.

[26]  O. Kovalchuk,et al.  Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins , 2006, Cancer biology & therapy.

[27]  M. Daly,et al.  Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). , 2005, Genome research.

[28]  Arend Sidow,et al.  Trade-offs in detecting evolutionarily constrained sequence by comparative genomics. , 2005, Annual review of genomics and human genetics.

[29]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[30]  J. Peterse,et al.  Breast cancer metastasis: markers and models , 2005, Nature Reviews Cancer.

[31]  Keji Zhao,et al.  Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. , 2005, Genes & development.

[32]  David Landsman,et al.  High-resolution genome-wide mapping of histone modifications , 2004, Nature Biotechnology.

[33]  Saeed Tavazoie,et al.  Mapping Global Histone Acetylation Patterns to Gene Expression , 2004, Cell.

[34]  Dennis C. Sgroi,et al.  Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis , 2003, Nature Cell Biology.

[35]  Martin Widschwendter,et al.  DNA methylation and breast carcinogenesis , 2002, Oncogene.

[36]  Stuart L. Schreiber,et al.  Methylation of histone H3 Lys 4 in coding regions of active genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Peter A. Jones,et al.  The Role of DNA Methylation in Mammalian Epigenetics , 2001, Science.

[38]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.