Remarks on Spectral Radius and Laplacian Eigenvalues of a Graph

AbstractLet G be a graph with n vertices, m edges and a vertex degree sequence (d1, d2,..., dn), where d1 ≥ d2 ≥ ... ≥ dn. The spectral radius and the largest Laplacian eigenvalue are denoted by ϱ(G) and µ(G), respectively. We determine the graphs with $$\varrho (G) = \frac{{d_n - 1}}{2} + \sqrt {2m - nd_n + \frac{{(d_n + 1)^2 }}{4}}$$ and the graphs with dn ≥ 1 and $$\mu (G) = d_n + \frac{1}{2} + \sqrt {\sum\limits_{i - 1}^n {di(di - dn) + } \left( {d_n - \frac{1}{2}} \right)^2 .}$$ We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.

[1]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[2]  R. Stanley A Bound on the Spectral Radius of Graphs with e Edges , 1987 .

[3]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Zhang Xiaodong,et al.  On thek-th largest eigenvalue of the Laplacian matrix of a graph , 2001 .

[6]  Jinlong Shu,et al.  A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph , 2002 .

[7]  Michael Doob,et al.  Spectra of graphs , 1980 .

[8]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[9]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[10]  Yuan Hong,et al.  Bounds of eigenvalues of graphs , 1993, Discret. Math..

[11]  Guojie Li,et al.  From the Editor-in-Chief , 1995, Journal of Computer Science and Technology.

[12]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..