Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations

Abstract This paper investigates chaotic behavior and stability of fractional differential equations within a new generalized Caputo derivative. A semi–analytical method is proposed based on Adomian polynomials and a fractional Taylor series. Furthermore, chaotic behavior of a fractional Lorenz equation are numerically discussed. Since the fractional derivative includes two fractional parameters, chaos becomes more complicated than the one in Caputo fractional differential equations. Finally, Lyapunov stability is defined for the generalized fractional system. A sufficient condition of asymptotic stability is given and numerical results support the theoretical analysis.

[1]  Yong Zhou,et al.  EXISTENCE AND UNIQUENESS FOR FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY , 2009 .

[2]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[3]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[4]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[5]  Jun-Sheng Duan,et al.  Recurrence triangle for Adomian polynomials , 2010, Appl. Math. Comput..

[6]  Dumitru Baleanu,et al.  Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps , 2015, Commun. Nonlinear Sci. Numer. Simul..

[7]  Caibin Zeng,et al.  Chaos detection and parameter identification in fractional-order chaotic systems with delay , 2013 .

[8]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[9]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[10]  D. Baleanu,et al.  Discrete fractional logistic map and its chaos , 2014 .

[11]  Udita N. Katugampola Existence and Uniqueness results for a class of Generalized Fractional Differential Equations , 2014, 1411.5229.

[12]  D. Anderson,et al.  Properties of the Katugampola fractional derivative with potential application in quantum mechanics , 2015 .

[13]  Xingyuan Wang,et al.  Chaos in the fractional-order complex Lorenz system and its synchronization , 2013 .

[14]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[15]  Randolph Rach,et al.  New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods , 2011, Appl. Math. Comput..

[16]  Allen Q. Ye,et al.  Anisotropic fractional diffusion tensor imaging , 2016, Journal of vibration and control : JVC.

[17]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[18]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[19]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[20]  D. Baleanu,et al.  Chaos synchronization of fractional chaotic maps based on the stability condition , 2016 .

[21]  卢俊国,et al.  Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization , 2006 .

[22]  Xiaona Song,et al.  Image encryption based on a delayed fractional-order chaotic logistic system , 2012 .

[23]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[24]  Sachin Bhalekar,et al.  Fractional ordered Liu system with time-delay , 2010 .

[25]  D. Baleanu,et al.  Riesz Riemann-Liouville difference on discrete domains. , 2016, Chaos.

[26]  Francesco Mainardi On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$ , 2014 .

[27]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[28]  Jun-Sheng Duan,et al.  Convenient analytic recurrence algorithms for the Adomian polynomials , 2011, Appl. Math. Comput..

[29]  D. Baleanu,et al.  Image encryption technique based on fractional chaotic time series , 2016 .

[30]  I. Podlubny Fractional differential equations , 1998 .

[31]  Song Liu,et al.  Monotonicity, Concavity, and Convexity of Fractional Derivative of Functions , 2013, TheScientificWorldJournal.

[32]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[33]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[34]  N. Shimizu,et al.  Fractional Derivative Constitutive Models for Finite Deformation of Viscoelastic Materials , 2015 .

[35]  D. Baleanu,et al.  Lattice fractional diffusion equation in terms of a Riesz–Caputo difference , 2015 .

[36]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[37]  Jun-Sheng Duan,et al.  An efficient algorithm for the multivariable Adomian polynomials , 2010, Appl. Math. Comput..

[38]  Dumitru Baleanu,et al.  A Jacobi operational matrix for solving a fuzzy linear fractional differential equation , 2013 .

[39]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[40]  Agnieszka B. Malinowska,et al.  Fractional differential equations with dependence on the Caputo-Katugampola derivative , 2016, 1607.06913.

[41]  Carla M. A. Pinto,et al.  Strange Dynamics in a Fractional Derivative of Complex-Order Network of Chaotic Oscillators , 2015, Int. J. Bifurc. Chaos.

[42]  Yangquan Chen,et al.  Robust controllability of interval fractional order linear time invariant systems , 2006, Signal Process..

[43]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[44]  Hongguang Sun,et al.  Anomalous diffusion modeling by fractal and fractional derivatives , 2010, Comput. Math. Appl..

[45]  Zhenjiang Zhao,et al.  Finite-time stability analysis of fractional-order neural networks with delay , 2015, Neurocomputing.

[46]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[47]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[48]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .