Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

Abstract We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb 2 Te 3 ) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3- ω method. Out-of-plane thermal conductivity of the Sb 2 Te 3 thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity ( κ e ) in total thermal conductivity ( κ ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

[1]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[2]  Ronggui Yang,et al.  Optimal thermoelectric figure of merit in Bi 2 Te 3 /Sb 2 Te 3 quantum dot nanocomposites , 2012 .

[3]  Sang‐Kwon Lee,et al.  Enhanced thermoelectric properties of thermal treated Sb2Te3 thin films , 2014 .

[4]  Bed Poudel,et al.  High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. , 2005, Journal of the American Chemical Society.

[5]  Hyuneui Lim,et al.  Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness , 2014, Nanoscale Research Letters.

[6]  Thomas W. Kenny,et al.  Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness. , 2012, Nano letters.

[7]  Reduction in thermal conductivity of Bi thin films with high-density ordered nanoscopic pores , 2013, Nanoscale Research Letters.

[8]  Hua Dong,et al.  Thermal and electrical conduction in 6.4 nm thin gold films. , 2013, Nanoscale.

[9]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[10]  D. Pinisetty,et al.  Fabrication and characterization of electrodeposited antimony telluride crystalline nanowires and nanotubes , 2011 .

[11]  Hyuneui Lim,et al.  Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures , 2013, Nanotechnology.

[12]  Temperature-dependent thermal conductivities of 1D semiconducting nanowires via four-point-probe 3-ω method. , 2013, Nanotechnology.

[13]  K. Liou,et al.  Electric current enhanced defect elimination in thermally annealed Bi–Sb–Te and Bi–Se–Te thermoelectric thin films , 2010 .

[14]  C. Uher,et al.  Heat transport in Sb 2Àx V x Te 3 single crystals , 2002 .

[15]  Mark S. Lundstrom,et al.  Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. , 2013, Nano letters.

[16]  T. Paszkiewicz,et al.  Thermal conductivity of GaN crystals in 4.2-300 K range , 2003 .

[17]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[18]  K. Nielsch,et al.  Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition , 2013 .

[19]  Zhigang Zeng,et al.  Investigation on the electrical transport properties of highly (00l)-textured Sb2Te3 films deposited by molecular beam epitaxy , 2014 .

[20]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[21]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[22]  M. Tan,et al.  Unique hierarchical structure and high thermoelectric properties of antimony telluride pillar arrays , 2012, Journal of Nanoparticle Research.

[23]  Xinwei Wang,et al.  Electron transport and bulk-like behavior of Wiedemann-Franz law for sub-7 nm-thin iridium films on silkworm silk. , 2014, ACS applied materials & interfaces.

[24]  D. Bourgault,et al.  Transport properties of thermoelectric Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thin films , 2014 .

[25]  Yuan Deng,et al.  Oriented growth of A2Te3 (A = Sb, Bi) films and their devices with enhanced thermoelectric performance , 2011 .

[26]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[27]  Jingfeng Li,et al.  Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering , 2014 .

[28]  Jongwoo Lim,et al.  Control of surface morphology and crystal structure of silicon nanowires and their coherent phonon transport characteristics , 2014 .

[29]  Li Shi,et al.  Thermal conductivities of individual tin dioxide nanobelts , 2004 .

[30]  Philip Kim,et al.  Diameter dependence of the transport properties of antimony telluride nanowires. , 2010, Nano letters.

[31]  M. S. Omar,et al.  Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires , 2012 .

[32]  Hoo-Jeong Lee,et al.  Microstructure evolution of sputtered BiSb–Te thermoelectric films during post-annealing and its effects on the thermoelectric properties , 2013 .

[33]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[34]  Zhigang Zeng,et al.  Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering , 2013, Journal of Materials Science: Materials in Electronics.

[35]  C. Uher,et al.  Diluted magnetic semiconductors based on Sb2-xVxTe3 (0.01≤x≤0.03) , 2002 .

[36]  T. Yagi,et al.  Thermal Conductivity Measurements of Sb–Te Alloy Thin Films Using a Nanosecond Thermoreflectance Measurement System , 2007 .

[37]  J. Alvarez-Quintana,et al.  Temperature dependent thermal conductivity of polycrystalline ZnO films , 2010 .

[38]  C. Uher,et al.  Transport coefficients and defect structure of Sb2−xAgxTe3 single crystals , 2006 .