A Survey on Deep Semi-Supervised Learning

Deep semi-supervised learning is a fast-growing field with a range of practical applications. This paper provides a comprehensive survey on both fundamentals and recent advances in deep semi-supervised learning methods from perspectives of model design and unsupervised loss functions. We first present a taxonomy for deep semi-supervised learning that categorizes existing methods, including deep generative methods, consistency regularization methods, graph-based methods, pseudo-labeling methods, and hybrid methods. Then we provide a comprehensive review of 52 representative methods and offer a detailed comparison of these methods in terms of the type of losses, contributions, and architecture differences. In addition to the progress in the past few years, we further discuss some shortcomings of existing methods and provide some tentative heuristic solutions for solving these open

[1]  Nojun Kwak,et al.  Consistency-based Semi-supervised Learning for Object detection , 2019, NeurIPS.

[2]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[3]  Geoffrey E. Hinton,et al.  Big Self-Supervised Models are Strong Semi-Supervised Learners , 2020, NeurIPS.

[4]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Sanja Fidler,et al.  The Role of Context for Object Detection and Semantic Segmentation in the Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Timo Aila,et al.  Temporal Ensembling for Semi-Supervised Learning , 2016, ICLR.

[7]  Diyi Yang,et al.  MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification , 2020, ACL.

[8]  Graham W. Taylor,et al.  Improved Regularization of Convolutional Neural Networks with Cutout , 2017, ArXiv.

[9]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[10]  Rob Fergus,et al.  Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks , 2016, ArXiv.

[11]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[12]  Hengshuang Zhao,et al.  GridMask Data Augmentation , 2020, ArXiv.

[13]  Xuebing Yang,et al.  PKGCN: prior knowledge enhanced graph convolutional network for graph-based semi-supervised learning , 2019, International Journal of Machine Learning and Cybernetics.

[14]  Zenglin Xu,et al.  Efficient Convex Relaxation for Transductive Support Vector Machine , 2007, NIPS.

[15]  Qian Xu,et al.  Graph Random Neural Networks for Semi-Supervised Learning on Graphs , 2020, NeurIPS.

[16]  Hui Xiong,et al.  A Comprehensive Survey on Transfer Learning , 2019, Proceedings of the IEEE.

[17]  Chandra Bhagavatula,et al.  Semi-supervised sequence tagging with bidirectional language models , 2017, ACL.

[18]  Xiang Zhang,et al.  Character-level Convolutional Networks for Text Classification , 2015, NIPS.

[19]  Jilong Wang,et al.  Graph Stochastic Neural Networks for Semi-supervised Learning , 2020, NeurIPS.

[20]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[21]  Richard Johansson,et al.  The CoNLL-2009 Shared Task: Syntactic and Semantic Dependencies in Multiple Languages , 2009, CoNLL Shared Task.

[22]  Alexander G. Schwing,et al.  Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning , 2020, NeurIPS.

[23]  Philip H. S. Torr,et al.  Rethinking Semi-Supervised Learning in VAEs , 2020, ArXiv.

[24]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[25]  Pieter Abbeel,et al.  Gradient Estimation Using Stochastic Computation Graphs , 2015, NIPS.

[26]  Joelle Pineau,et al.  The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems , 2015, SIGDIAL Conference.

[27]  Yi Yang,et al.  Random Erasing Data Augmentation , 2017, AAAI.

[28]  Joakim Nivre,et al.  Universal Dependency Annotation for Multilingual Parsing , 2013, ACL.

[29]  Fan Yang,et al.  Good Semi-supervised Learning That Requires a Bad GAN , 2017, NIPS.

[30]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Strategies From Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Alexandre H. Thiery,et al.  On Data-Augmentation and Consistency-Based Semi-Supervised Learning , 2021, ICLR.

[32]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[33]  Holger H. Hoos,et al.  A survey on semi-supervised learning , 2019, Machine Learning.

[34]  Zenglin Xu,et al.  Adaptive Regularization for Transductive Support Vector Machine , 2009, NIPS.

[35]  Yuan Luo,et al.  Graph Convolutional Networks for Text Classification , 2018, AAAI.

[36]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[37]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Thomas Brox,et al.  Discriminative Unsupervised Feature Learning with Convolutional Neural Networks , 2014, NIPS.

[39]  Quoc V. Le,et al.  Semi-supervised Sequence Learning , 2015, NIPS.

[40]  Jian Sun,et al.  BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[41]  Tong Lin,et al.  MarginGAN: Adversarial Training in Semi-Supervised Learning , 2019, NeurIPS.

[42]  Rynson W. H. Lau,et al.  Dual Student: Breaking the Limits of the Teacher in Semi-Supervised Learning , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[43]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[44]  Jason Weston,et al.  Deep learning via semi-supervised embedding , 2008, ICML '08.

[45]  Shin Ishii,et al.  Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[47]  Alexander Zien,et al.  A continuation method for semi-supervised SVMs , 2006, ICML.

[48]  Nitesh V. Chawla,et al.  Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains , 2011, J. Artif. Intell. Res..

[49]  Linmei Hu,et al.  Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification , 2019, EMNLP.

[50]  Jitendra Malik,et al.  Object Segmentation by Long Term Analysis of Point Trajectories , 2010, ECCV.

[51]  Mark Steedman,et al.  CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank , 2007, CL.

[52]  Max Welling,et al.  Variational Graph Auto-Encoders , 2016, ArXiv.

[53]  Hao Hu,et al.  Global Versus Localized Generative Adversarial Nets , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[54]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[55]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[56]  David Berthelot,et al.  MixMatch: A Holistic Approach to Semi-Supervised Learning , 2019, NeurIPS.

[57]  Anton van den Hengel,et al.  Infinite Variational Autoencoder for Semi-Supervised Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[59]  Taghi M. Khoshgoftaar,et al.  Survey on deep learning with class imbalance , 2019, J. Big Data.

[60]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[61]  Md. Zakirul Alam Bhuiyan,et al.  A Survey on Deep Learning in Big Data , 2017, 22017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC).

[62]  Quoc V. Le,et al.  Rethinking Pre-training and Self-training , 2020, NeurIPS.

[63]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[64]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[65]  Xiang Wei,et al.  Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect , 2018, ICLR.

[66]  Tolga Tasdizen,et al.  Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning , 2016, NIPS.

[67]  Xingrui Yu,et al.  Co-teaching: Robust training of deep neural networks with extremely noisy labels , 2018, NeurIPS.

[68]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Frank D. Wood,et al.  Learning Disentangled Representations with Semi-Supervised Deep Generative Models , 2017, NIPS.

[71]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[72]  Dong-Hyun Lee,et al.  Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks , 2013 .

[73]  Ole Winther,et al.  Auxiliary Deep Generative Models , 2016, ICML.

[74]  Jayashree Padmanabhan,et al.  Advanced Deep Neural Networks for Pattern Recognition: An Experimental Study , 2016, SoCPaR.

[75]  Martial Hebert,et al.  Watch and learn: Semi-supervised learning of object detectors from videos , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[76]  Tat-Seng Chua,et al.  SESS: Self-Ensembling Semi-Supervised 3D Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[78]  Alexander Zien,et al.  Label Propagation and Quadratic Criterion , 2006 .

[79]  Andrew Gordon Wilson,et al.  Averaging Weights Leads to Wider Optima and Better Generalization , 2018, UAI.

[80]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[81]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[82]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[83]  David Berthelot,et al.  FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence , 2020, NeurIPS.

[84]  Lucas Beyer,et al.  In Defense of the Triplet Loss for Person Re-Identification , 2017, ArXiv.

[85]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[86]  Cristian Danescu-Niculescu-Mizil,et al.  Chameleons in Imagined Conversations: A New Approach to Understanding Coordination of Linguistic Style in Dialogs , 2011, CMCL@ACL.

[87]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[88]  Abhishek Kumar,et al.  Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference , 2017, NIPS.

[89]  Massih-Reza Amini,et al.  Learning Classification with Both Labeled and Unlabeled Data , 2002, ECML.

[90]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[91]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[92]  Xu Sun,et al.  A Unified Model for Cross-Domain and Semi-Supervised Named Entity Recognition in Chinese Social Media , 2017, AAAI.

[93]  Il-Chul Moon,et al.  Adversarial Dropout for Supervised and Semi-supervised Learning , 2017, AAAI.

[94]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[95]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[96]  Rouzbeh A. Shirvani,et al.  Natural Language Processing Advancements By Deep Learning: A Survey , 2020, ArXiv.

[97]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[98]  Quoc V. Le,et al.  RandAugment: Practical data augmentation with no separate search , 2019, ArXiv.

[99]  Ashtosh Sapru,et al.  Knowledge Distillation and Data Selection for Semi-Supervised Learning in CTC Acoustic Models , 2020, ArXiv.

[100]  Luc Van Gool,et al.  A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[101]  Amos Storkey,et al.  Meta-Learning in Neural Networks: A Survey , 2020, IEEE transactions on pattern analysis and machine intelligence.

[102]  Robert D. Nowak,et al.  Unlabeled data: Now it helps, now it doesn't , 2008, NIPS.

[103]  Rico Sennrich,et al.  Improving Neural Machine Translation Models with Monolingual Data , 2015, ACL.

[104]  Zhi-Hua Zhou,et al.  Tri-training: exploiting unlabeled data using three classifiers , 2005, IEEE Transactions on Knowledge and Data Engineering.

[105]  Hakan Cevikalp,et al.  Semi-supervised robust deep neural networks for multi-label image classification , 2020, Pattern Recognit..

[106]  Mirella Lapata,et al.  Semi-Supervised Semantic Role Labeling with Cross-View Training , 2019, EMNLP.

[107]  Guo-Jun Qi,et al.  WCP: Worst-Case Perturbations for Semi-Supervised Deep Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Yoshua Bengio,et al.  Interpolation Consistency Training for Semi-Supervised Learning , 2019, IJCAI.

[109]  Rui Zhang,et al.  Semi-Supervised Dialogue Policy Learning via Stochastic Reward Estimation , 2020, ACL.

[110]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[111]  Zhi-Hua Zhou,et al.  Semi-supervised learning by disagreement , 2010, Knowledge and Information Systems.

[112]  Sabine Buchholz,et al.  Introduction to the CoNLL-2000 Shared Task Chunking , 2000, CoNLL/LLL.

[113]  Mohit Bansal,et al.  Addressing Semantic Drift in Question Generation for Semi-Supervised Question Answering , 2019, EMNLP.

[114]  Eric P. Xing,et al.  Harnessing Deep Neural Networks with Logic Rules , 2016, ACL.

[115]  Yunchao Wei,et al.  Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi-Supervised Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[116]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.

[117]  Daisuke Kihara,et al.  EnAET: A Self-Trained Framework for Semi-Supervised and Supervised Learning With Ensemble Transformations , 2021, IEEE Transactions on Image Processing.

[118]  Jin-Gang Yu,et al.  A simple graph-based semi-supervised learning approach for imbalanced classification , 2021, Pattern Recognit..

[119]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[120]  Virginia R. de Sa,et al.  Learning Classification with Unlabeled Data , 1993, NIPS.

[121]  Quoc V. Le,et al.  Unsupervised Data Augmentation for Consistency Training , 2019, NeurIPS.

[122]  Yuxing Tang,et al.  Visual and Semantic Knowledge Transfer for Large Scale Semi-Supervised Object Detection , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[123]  Jian Pei,et al.  Asymmetric Transitivity Preserving Graph Embedding , 2016, KDD.

[124]  Roberto Cipolla,et al.  Segmentation and Recognition Using Structure from Motion Point Clouds , 2008, ECCV.

[125]  Junnan Li,et al.  DivideMix: Learning with Noisy Labels as Semi-supervised Learning , 2020, ICLR.

[126]  Thomas Lu,et al.  Deep Neural Networks for Pattern Recognition , 2018, ArXiv.

[127]  Fillia Makedon,et al.  A Survey on Contrastive Self-supervised Learning , 2020, Technologies.

[128]  David J. Miller,et al.  A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data , 1996, NIPS.

[129]  Zhiwen Yu,et al.  Enhancing TripleGAN for Semi-Supervised Conditional Instance Synthesis and Classification , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[130]  Mark Coates,et al.  Bayesian graph convolutional neural networks for semi-supervised classification , 2018, AAAI.

[131]  Sungroh Yoon,et al.  FickleNet: Weakly and Semi-Supervised Semantic Image Segmentation Using Stochastic Inference , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[132]  C. V. Jawahar,et al.  Universal Semi-Supervised Semantic Segmentation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[133]  Quoc V. Le,et al.  Meta Pseudo Labels , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[134]  Ying Tan,et al.  Variational Autoencoder for Semi-Supervised Text Classification , 2017, AAAI.

[135]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[136]  Seunghoon Hong,et al.  Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation , 2015, NIPS.

[137]  Liang Zhao,et al.  Semi-supervised Semantic Role Labeling for Brazilian Portuguese , 2017, J. Inf. Data Manag..

[138]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[139]  Colin Raffel,et al.  Realistic Evaluation of Deep Semi-Supervised Learning Algorithms , 2018, NeurIPS.

[140]  Richard S. Zemel,et al.  Gated Graph Sequence Neural Networks , 2015, ICLR.

[141]  Thomas Brox,et al.  Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  Aske Plaat,et al.  A survey of deep meta-learning , 2020, Artificial Intelligence Review.

[143]  Zhiwen Yu,et al.  Regularizing Discriminative Capability of CGANs for Semi-Supervised Generative Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  David L. Dill,et al.  Learning a SAT Solver from Single-Bit Supervision , 2018, ICLR.

[145]  Renjie Liao,et al.  Graph Partition Neural Networks for Semi-Supervised Classification , 2018, ICLR.

[146]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[147]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition , 2003, CoNLL.

[148]  Zoubin Ghahramani,et al.  Learning from labeled and unlabeled data with label propagation , 2002 .

[149]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[150]  Paolo Ferragina,et al.  Classification of Short Texts by Deploying Topical Annotations , 2012, ECIR.

[151]  Andrew M. Dai,et al.  Adversarial Training Methods for Semi-Supervised Text Classification , 2016, ICLR.

[152]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[153]  Simon Fraser,et al.  Semi-Supervised Semantic Image Segmentation With Self-Correcting Networks , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[154]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[155]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[156]  Brendan T. O'Connor,et al.  Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters , 2013, NAACL.

[157]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[158]  Wei Lu,et al.  Deep Neural Networks for Learning Graph Representations , 2016, AAAI.

[159]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[160]  Quoc V. Le,et al.  Randaugment: Practical automated data augmentation with a reduced search space , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[161]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[162]  ASHOK K. AGRAWALA,et al.  Learning with a probabilistic teacher , 1970, IEEE Trans. Inf. Theory.

[163]  Sung Ju Hwang,et al.  Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning , 2020, NeurIPS.

[164]  Ruslan Salakhutdinov,et al.  Revisiting LSTM Networks for Semi-Supervised Text Classification via Mixed Objective Function , 2019, AAAI.

[165]  Stefan Ultes,et al.  MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling , 2018, EMNLP.

[166]  Yuan Xie,et al.  Semi-Supervised Video Salient Object Detection Using Pseudo-Labels , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[167]  Jost Tobias Springenberg,et al.  Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks , 2015, ICLR.

[168]  Augustus Odena,et al.  Semi-Supervised Learning with Generative Adversarial Networks , 2016, ArXiv.

[169]  Ayhan Demiriz,et al.  Semi-Supervised Support Vector Machines , 1998, NIPS.

[170]  Jong-Hoon Oh,et al.  A Semi-Supervised Learning Approach to Why-Question Answering , 2016, AAAI.

[171]  Han Zhang,et al.  A Simple Semi-Supervised Learning Framework for Object Detection , 2020, ArXiv.

[172]  Hwee Tou Ng,et al.  Towards Robust Linguistic Analysis using OntoNotes , 2013, CoNLL.

[173]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[174]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[175]  Leo Breiman,et al.  Randomizing Outputs to Increase Prediction Accuracy , 2000, Machine Learning.

[176]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[177]  Quan Pan,et al.  Disentangled Variational Auto-Encoder for Semi-supervised Learning , 2017, Inf. Sci..

[178]  Bin Liu,et al.  Density-Aware Graph for Deep Semi-Supervised Visual Recognition , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[179]  Dumitru Erhan,et al.  Training Deep Neural Networks on Noisy Labels with Bootstrapping , 2014, ICLR.

[180]  Yingli Tian,et al.  Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[181]  Tieniu Tan,et al.  Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification , 2019, IJCAI.

[182]  Lin Yang,et al.  SemiContour: A Semi-Supervised Learning Approach for Contour Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[183]  Eric P. Xing,et al.  Structured Generative Adversarial Networks , 2017, NIPS.

[184]  Yuxing Tang,et al.  Large Scale Semi-Supervised Object Detection Using Visual and Semantic Knowledge Transfer , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[185]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[186]  Andreas Spanias,et al.  Positive And Unlabeled Learning Algorithms And Applications: A Survey , 2019, 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA).

[187]  Jiebo Luo,et al.  Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[188]  Zhi-Hua Zhou,et al.  Towards Safe Weakly Supervised Learning , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[189]  H. J. Scudder,et al.  Probability of error of some adaptive pattern-recognition machines , 1965, IEEE Trans. Inf. Theory.

[190]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.

[191]  Myle Ott,et al.  Understanding Back-Translation at Scale , 2018, EMNLP.

[192]  Ming-Wei Chang,et al.  Importance of Semantic Representation: Dataless Classification , 2008, AAAI.

[193]  Xiaowu Chen,et al.  A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection , 2016, IEEE Transactions on Image Processing.

[194]  Jun Zhu,et al.  Triple Generative Adversarial Nets , 2017, NIPS.

[195]  Yannis Avrithis,et al.  Label Propagation for Deep Semi-Supervised Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[196]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[197]  David Berthelot,et al.  ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring , 2020, ICLR.

[198]  Zhe Gan,et al.  Triangle Generative Adversarial Networks , 2017, NIPS.

[199]  Huimin Peng,et al.  A Comprehensive Overview and Survey of Recent Advances in Meta-Learning , 2020, ArXiv.

[200]  Andrew Gordon Wilson,et al.  There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average , 2018, ICLR.

[201]  LuZhiwu,et al.  Noise-robust semi-supervised learning via fast sparse coding , 2015 .

[202]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[203]  Joaquin Vanschoren,et al.  Meta-Learning: A Survey , 2018, Automated Machine Learning.

[204]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[205]  Concetto Spampinato,et al.  Semi Supervised Semantic Segmentation Using Generative Adversarial Network , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[206]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[207]  Jie Tang,et al.  Self-Supervised Learning: Generative or Contrastive , 2020, IEEE Transactions on Knowledge and Data Engineering.

[208]  Annan Li,et al.  KE-GAN: Knowledge Embedded Generative Adversarial Networks for Semi-Supervised Scene Parsing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[209]  Qiang Ma,et al.  Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification , 2018, WWW.

[210]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[211]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[212]  Quoc V. Le,et al.  Semi-Supervised Sequence Modeling with Cross-View Training , 2018, EMNLP.

[213]  Ramakant Nevatia,et al.  NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[214]  Stanley C. Fralick,et al.  Learning to recognize patterns without a teacher , 1967, IEEE Trans. Inf. Theory.

[215]  Xiao-Ming Wu,et al.  Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning , 2018, AAAI.

[216]  Zhiwu Lu,et al.  Noise-robust semi-supervised learning via fast sparse coding , 2015, Pattern Recognit..

[217]  Marek Rei,et al.  Semi-supervised Multitask Learning for Sequence Labeling , 2017, ACL.

[218]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[219]  Jiebo Luo,et al.  AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transformations Rather Than Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[220]  Thomas Brox,et al.  Semi-Supervised Semantic Segmentation With High- and Low-Level Consistency , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[221]  Hwiyeol Jo,et al.  Delta-training: Simple Semi-Supervised Text Classification using Pretrained Word Embeddings , 2019, 1901.07651.

[222]  David Reitter,et al.  Learning a Deep Hybrid Model for Semi-Supervised Text Classification , 2015, EMNLP.

[223]  Jesse Davis,et al.  Learning from positive and unlabeled data: a survey , 2018, Machine Learning.

[224]  Quoc V. Le,et al.  Self-Training With Noisy Student Improves ImageNet Classification , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[225]  Gim Hee Lee,et al.  Transferable Semi-Supervised 3D Object Detection From RGB-D Data , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[226]  Bhuwan Dhingra,et al.  Simple and Effective Semi-Supervised Question Answering , 2018, NAACL.

[227]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[228]  Eunsol Choi,et al.  TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension , 2017, ACL.

[229]  Shuchang Zhou,et al.  Data-Efficient Semi-Supervised Learning by Reliable Edge Mining , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[230]  Yoshua Bengio,et al.  Semi-supervised Learning by Entropy Minimization , 2004, CAP.

[231]  Seong Joon Oh,et al.  CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[232]  Prateek Yadav,et al.  Confidence-based Graph Convolutional Networks for Semi-Supervised Learning , 2019, AISTATS.

[233]  Carey E. Priebe,et al.  The Effect of Model Misspecification on Semi-Supervised Classification , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[234]  C. Hudelot,et al.  Semi-Supervised Semantic Segmentation With Cross-Consistency Training , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[235]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[236]  Wenpeng Yin,et al.  Meta-learning for Few-shot Natural Language Processing: A Survey , 2020, ArXiv.

[237]  Tong Zhang,et al.  Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding , 2015, NIPS.

[238]  Yoshua Bengio,et al.  Deconstructing the Ladder Network Architecture , 2015, ICML.

[239]  Yong Jae Lee,et al.  Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization and Beyond , 2018, ArXiv.

[240]  Susumu Horiguchi,et al.  Learning to classify short and sparse text & web with hidden topics from large-scale data collections , 2008, WWW.

[241]  Wenwu Zhu,et al.  Structural Deep Network Embedding , 2016, KDD.

[242]  Alexander Kolesnikov,et al.  Revisiting Self-Supervised Visual Representation Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[243]  Bo Wang,et al.  Deep Co-Training for Semi-Supervised Image Recognition , 2018, ECCV.

[244]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[245]  Li Zhen,et al.  Semi-Supervised Video Salient Object Detection Using Pseudo-Labels , 2019 .

[246]  Stephen Gould,et al.  Decomposing a scene into geometric and semantically consistent regions , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[247]  Gustavo Carneiro,et al.  A Bayesian Data Augmentation Approach for Learning Deep Models , 2017, NIPS.

[248]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[249]  Longbiao Wang,et al.  A Semi-Supervised Stable Variational Network for Promoting Replier-Consistency in Dialogue Generation , 2019, EMNLP.

[250]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[251]  Harri Valpola,et al.  Weight-averaged consistency targets improve semi-supervised deep learning results , 2017, ArXiv.