Electrospun nanowebs of NiO/SnO 2 p-n heterojunctions for enhanced gas sensing

[1]  Xin Wang,et al.  Enhanced gas sensing properties of SnO2: The role of the oxygen defects induced by quenching , 2016 .

[2]  Jing Guo,et al.  Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor , 2016 .

[3]  Guang Sun,et al.  Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties , 2016 .

[4]  Changsheng Xie,et al.  A novel approach to fabricate metal oxide nanowire-like networks based coplanar gas sensors array for enhanced selectivity , 2014 .

[5]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[6]  Li Ling,et al.  Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods , 2014 .

[7]  Bingqiang Cao,et al.  Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction , 2014 .

[8]  Yun Wang,et al.  Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing. , 2014, ACS applied materials & interfaces.

[9]  N. Myung,et al.  Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires , 2014, Nanotechnology.

[10]  K. Sun,et al.  High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing , 2013 .

[11]  M. Rumyantseva,et al.  One-dimensional CuO–SnO2 p–n heterojunctions for enhanced detection of H2S , 2013 .

[12]  C. Xie,et al.  An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance , 2013 .

[13]  Sheikh A. Akbar,et al.  Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review , 2012, Sensors.

[14]  Teng Fei,et al.  Template-free synthesized hollow NiO–SnO2 nanospheres with high gas-sensing performance , 2012 .

[15]  Coleman X. Kronawitter,et al.  TiO2-SnO2:F interfacial electronic structure investigated by soft x-ray absorption spectroscopy , 2012 .

[16]  Li Liu,et al.  High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C , 2011 .

[17]  Nicolae Barsan,et al.  The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2‐Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies , 2011 .

[18]  T. Seong,et al.  Facile control of C₂H₅OH sensing characteristics by decorating discrete Ag nanoclusters on SnO₂ nanowire networks. , 2011, ACS applied materials & interfaces.

[19]  Byeong Kwon Ju,et al.  Gas sensing properties of SnO2 nanowires on micro-heater , 2011 .

[20]  G. Shen,et al.  Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. , 2011, ACS applied materials & interfaces.

[21]  Quanqin Zhao,et al.  Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. , 2011, Nanoscale.

[22]  Il-Doo Kim,et al.  Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading , 2010 .

[23]  Bin Ding,et al.  Electrospun nanomaterials for ultrasensitive sensors , 2010, Materials Today.

[24]  Xinghua Li,et al.  Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. , 2010, ACS applied materials & interfaces.

[25]  Yun Chan Kang,et al.  Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers , 2010 .

[26]  M. Zacharias,et al.  Nanowire-based sensors. , 2010, Small.

[27]  K. Kim,et al.  Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. , 2010, Chemical communications.

[28]  D. Choi,et al.  Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications , 2010 .

[29]  Wei Wang,et al.  A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers , 2009 .

[30]  W. Cai,et al.  Hetero-apertured micro/nanostructured ordered porous array: layer-by-layered construction and structure-induced sensing parameter controllability. , 2009, ACS nano.

[31]  Xuejun Zheng,et al.  Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123 , 2009 .

[32]  Bin Zhao,et al.  Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties , 2009 .

[33]  T. Sham,et al.  An X-ray Absorption, Photoemission, and Raman Study of the Interaction between SnO2 Nanoparticle and Carbon Nanotube , 2009 .

[34]  Gang Sun,et al.  Gas Sensors Based on Electrospun Nanofibers , 2009, Sensors.

[35]  Wan‐Yu Wu,et al.  Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection , 2009, Nanoscale research letters.

[36]  Feng Huang,et al.  Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers , 2008 .

[37]  Jun Yu,et al.  Study on a micro-gas sensor with SnO2–NiO sensitive film for indoor formaldehyde detection , 2008 .

[38]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[39]  Charles Surya,et al.  Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers , 2007 .

[40]  L. J. Chen,et al.  Lateral self-aligned p-type In2O3 nanowire arrays epitaxially grown on Si substrates. , 2007, Nano letters.

[41]  Chen-Sheng Yeh,et al.  Hydrothermal Synthesis of SnO2 Nanoparticles and Their Gas-Sensing of Alcohol , 2007 .

[42]  J. Leckie,et al.  An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. , 2007, Nano letters.

[43]  R. Blyth,et al.  Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states , 2006 .

[44]  W. Pan,et al.  Fabrication, assembly, and electrical characterization of CuO nanofibers , 2006 .

[45]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[46]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[47]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[48]  R. Egdell,et al.  Influence of shallow core-level hybridization on the electronic structure of post-transition-metal oxides studied using soft X-ray emission and absorption , 2003 .

[49]  Younan Xia,et al.  Fabrication of Titania Nanofibers by Electrospinning , 2003 .

[50]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.