The Influence of Wiring Economy on Nervous System Evolution

The activity and maintenance of neurons requires substantial metabolic energy, resulting in selective pressure to decrease resource consumption by the nervous system. The wiring economy principle proposes that animals have evolved mechanisms that wire circuits efficiently by minimizing neurite length. Computational modeling of neuronal morphology, microcircuit organization, and neural networks reveals that wiring economy is a significant determinant of nervous system layout. The strategies for reducing wiring costs are shared across phyla and point to the possibility of generalizable rules that specify the development of efficient nervous systems. As the developmental mechanisms underpinning wiring economy are only now being elucidated, whether the molecular basis of this phenomenon is the result of conserved genetic programs or convergent evolution remains to be determined.

[1]  Louis K. Scheffer,et al.  Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. , 2011, Current biology : CB.

[2]  R. Buxbaum,et al.  A cytomechanical investigation of neurite growth on different culture surfaces , 1992, The Journal of cell biology.

[3]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[4]  Alexander Borst,et al.  Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.

[5]  R. Buxbaum,et al.  Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. , 1988, The Journal of cell biology.

[6]  Vitaly A Klyachko,et al.  Connectivity optimization and the positioning of cortical areas , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. S. Steinberg,et al.  Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. , 1963, Science.

[8]  H. Neuert,et al.  A Network of Cadherin-Mediated Interactions Polarizes Growth Cones to Determine Targeting Specificity , 2013, Cell.

[9]  N. Holland,et al.  Early central nervous system evolution: an era of skin brains? , 2003, Nature Reviews Neuroscience.

[10]  F. Leiss,et al.  Characterization of dendritic spines in the Drosophila central nervous system , 2009, Developmental neurobiology.

[11]  F. Fagotto,et al.  The cellular basis of tissue separation , 2014, Development.

[12]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[13]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[14]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[15]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Tang,et al.  Total Wiring Length Minimization of C. elegans Neural Network: A Constrained Optimization Approach , 2015, PloS one.

[17]  C. Cherniak,et al.  Large-scale optimization of neuron arbors. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Dmitri B. Chklovskii,et al.  Synaptic Connectivity and Neuronal MorphologyTwo Sides of the Same Coin , 2004 .

[19]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[20]  T. Tallinen,et al.  Gyrification from constrained cortical expansion , 2014, Proceedings of the National Academy of Sciences.

[21]  Hausser Michael,et al.  One rule to grow them all: A general theory of neuronal branching and its practical application , 2010 .

[22]  Claus C. Hilgetag,et al.  Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex , 2006, PLoS Comput. Biol..

[23]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[24]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[26]  R. Pan,et al.  Mesoscopic Organization Reveals the Constraints Governing Caenorhabditis elegans Nervous System , 2009, PloS one.

[27]  L. Taber,et al.  Axons pull on the brain, but tension does not drive cortical folding. , 2010, Journal of biomechanical engineering.

[28]  J. Kaas,et al.  Connectivity-driven white matter scaling and folding in primate cerebral cortex , 2010, Proceedings of the National Academy of Sciences.

[29]  Marcus Kaiser,et al.  Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems , 2006, PLoS Comput. Biol..

[30]  Jeremy E Niven,et al.  Diversity and evolution of the insect ventral nerve cord. , 2008, Annual review of entomology.

[31]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[32]  J. N. Kay,et al.  Development of dendritic form and function. , 2015, Annual review of cell and developmental biology.

[33]  Jan Karbowski,et al.  Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization , 2015, PLoS Comput. Biol..

[34]  Quan Wen,et al.  Segregation of the Brain into Gray and White Matter: A Design Minimizing Conduction Delays , 2005, PLoS Comput. Biol..

[35]  R. Buxbaum,et al.  The cytomechanics of axonal elongation and retraction , 1989, The Journal of cell biology.

[36]  Dmitri B. Chklovskii,et al.  Orientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach , 2001, Neuron.

[37]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[38]  Elizabeth G. Atkinson,et al.  Cortical Folding of the Primate Brain: An Interdisciplinary Examination of the Genetic Architecture, Modularity, and Evolvability of a Significant Neurological Trait in Pedigreed Baboons (Genus Papio) , 2015, Genetics.

[39]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[40]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[41]  Malcolm S. Steinberg,et al.  Reconstruction of Tissues by Dissociated Cells , 1963 .

[42]  I. Meinertzhagen,et al.  Differential Adhesion Determines the Organization of Synaptic Fascicles in the Drosophila Visual System , 2014, Current Biology.

[43]  Raul Rodriguez-Esteban,et al.  Global optimization of cerebral cortex layout. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Dmitri B Chklovskii,et al.  Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors , 2009, Proceedings of the National Academy of Sciences.

[45]  P. Manger,et al.  Order‐specific quantitative patterns of cortical gyrification , 2007, The European journal of neuroscience.

[46]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[47]  J. Sanes,et al.  Design Principles of Insect and Vertebrate Visual Systems , 2010, Neuron.

[48]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[49]  A. Pérez-Escudero,et al.  Optimally wired subnetwork determines neuroanatomy of Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[50]  K. Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Andreas Prokop,et al.  Are dendrites in Drosophila homologous to vertebrate dendrites? , 2005, Developmental biology.

[52]  J. Culotti,et al.  Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. , 2000, Development.

[53]  G. Mitchison Neuronal branching patterns and the economy of cortical wiring , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  T. Bonhoeffer,et al.  Development of orientation preference in the mammalian visual cortex. , 1999, Journal of neurobiology.

[55]  Hanchuan Peng,et al.  Wiring economy can account for cell body placement across species and brain areas , 2014, Current Biology.

[56]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[57]  V. Caviness,et al.  Mechanical model of brain convolutional development. , 1975, Science.

[58]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[59]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[60]  R Nieuwenhuys,et al.  Comparative anatomy of the cerebellum. , 1967, Progress in brain research.

[61]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[62]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[63]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[64]  Ashish Raj,et al.  The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain , 2011, PloS one.

[65]  Dror G. Feitelson,et al.  C. elegans multi-dendritic sensory neurons: Morphology and function , 2011, Molecular and Cellular Neuroscience.

[66]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[67]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[68]  Janina Hesse,et al.  Externalization of neuronal somata as an evolutionary strategy for energy economization , 2015, Current Biology.

[69]  K. Shen,et al.  Neuronal polarity in C. elegans , 2011, Developmental neurobiology.

[70]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[71]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[72]  C Cherniak,et al.  Component placement optimization in the brain , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  J. Culotti,et al.  Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally , 1993, Nature.

[74]  R. Lund,et al.  Receptive field properties of single neurons in rat primary visual cortex. , 1999, Journal of neurophysiology.

[75]  D. Purves,et al.  Individual variation and lateral asymmetry of the rat primary somatosensory cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[77]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[78]  Patrick R Hof,et al.  Functional Trade-Offs in White Matter Axonal Scaling , 2008, The Journal of Neuroscience.

[79]  M. Burrows,et al.  ELECTRICAL CHARACTERISTICS OF THE MEMBRANE OF AN IDENTIFIED INSECT MOTOR NEURONE , 1980 .

[80]  K. Shen,et al.  Cellular and molecular mechanisms of synaptic specificity. , 2014, Annual review of cell and developmental biology.

[81]  G. Horridge,et al.  Structure and function in the nervous systems of invertebrates , 1965 .

[82]  Changsong Zhou,et al.  Trade-off between Multiple Constraints Enables Simultaneous Formation of Modules and Hubs in Neural Systems , 2013, PLoS Comput. Biol..

[83]  Dmitri B Chklovskii,et al.  A cost-benefit analysis of neuronal morphology. , 2008, Journal of neurophysiology.

[84]  Wouter Houthoofd,et al.  The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea) , 2007 .

[85]  Dmitri B Chklovskii,et al.  Synaptic Connectivity and Neuronal Morphology Two Sides of the Same Coin , 2004, Neuron.

[86]  Siegfried Kasper,et al.  Individual Diversity of Functional Brain Network Economy , 2015, Brain Connect..

[87]  E. G. Gray,et al.  Electron Microscopy of Synaptic Contacts on Dendrite Spines of the Cerebral Cortex , 1959, Nature.

[88]  William D. Hopkins,et al.  Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates , 2014, Front. Neuroanat..

[89]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.