Patterning by Photolithography

[1]  Christopher K. Ober,et al.  Hydroxyphenylbenzene derivatives as glass forming molecules for high resolution photoresists , 2008 .

[2]  Yayi Wei,et al.  Are extreme ultraviolet resists ready for the 32nm node , 2007 .

[3]  Mingxing Wang,et al.  New Anionic Photoacid Generator Bound Polymer Resists for EUV Lithography , 2007 .

[4]  Timothy A. Shedd,et al.  Contact angles and liquid loss behavior of high index fluids , 2007, European Mask and Lithography Conference.

[5]  Veroniki P. Vidali,et al.  Stochastic simulation studies of molecular resists , 2007 .

[6]  Mingxing Wang,et al.  Novel anionic photoacid generators (PAGs) and corresponding PAG bound polymers for sub-50 nm EUV lithography , 2007 .

[7]  Patrick P. Naulleau,et al.  Fundamental limits to EUV photoresist , 2007, SPIE Advanced Lithography.

[8]  Wen Bin Wu,et al.  Double patterning with multilayer hard mask shrinkage for sub-0.25 k1 lithography , 2007, SPIE Advanced Lithography.

[9]  Will Conley,et al.  Novel high-index resists for 193-nm immersion lithography and beyond , 2007, SPIE Advanced Lithography.

[10]  Yayi Wei,et al.  Evaluation of 193-nm immersion resist without topcoat , 2006 .

[11]  Eric M. Gullikson,et al.  Absorbance measurement of polymers at extreme ultraviolet wavelength: Correlation between experimental and theoretical calculations , 2006 .

[12]  Junyan Dai,et al.  Molecular Glass Resists for High-Resolution Patterning , 2006 .

[13]  Seung Wook Chang,et al.  Molecular glass photoresists for advanced lithography , 2006 .

[14]  R. Ayothi,et al.  Sub-50 nm feature sizes using positive tone molecular glass resists for EUV lithography , 2006 .

[15]  Evangelos Gogolides,et al.  Effects of model polymer chain architectures and molecular weight of conventional and chemically amplified photoresists on line-edge roughness. Stochastic simulations , 2006 .

[16]  S. Owa,et al.  Practical development and implementation of 193nm immersion lithography , 2006 .

[17]  Gregory Nellis,et al.  Measurements of the dynamic contact angle for conditions relevant to immersion lithography , 2006 .

[18]  Will Conley,et al.  Amplification of the index of refraction of aqueous immersion fluids with crown ethers: a progress report , 2006, SPIE Advanced Lithography.

[19]  Yayi Wei,et al.  Selection and evaluation of developer-soluble topcoat for 193nm immersion lithography , 2006, SPIE Advanced Lithography.

[20]  Minoru Toriumi,et al.  Diffusion mechanism of water for immersion lithography , 2006, SPIE Advanced Lithography.

[21]  Yong Wang,et al.  High-refractive-index fluids for the next-generation ArF immersion lithography , 2006, SPIE Advanced Lithography.

[22]  Yan Borodovsky,et al.  Marching to the beat of Moore's Law , 2006, SPIE Advanced Lithography.

[23]  R. D. Allen,et al.  ArF excimer laser resists based on fluoroalcohol , 2006 .

[24]  Yasuhiko Shirota,et al.  Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications , 2005 .

[25]  Kenneth A. Goldberg,et al.  EUV microexposures at the ALS using the 0.3-NA MET projection optics , 2005, SPIE Advanced Lithography.

[26]  Wang Yueh,et al.  Quantification of EUV resist outgassing , 2005, SPIE Advanced Lithography.

[27]  Kurt R. Kimmel,et al.  Progress toward developing high performance immersion compatible materials and processes , 2005, SPIE Advanced Lithography.

[28]  Will Conley,et al.  Understanding the photoresist surface-liquid interface for ArF immersion lithography , 2005, SPIE Advanced Lithography.

[29]  Hiroshi Ito,et al.  Molecular resists based on polyhedral oligomeric silsesquioxanes (POSS) , 2005, SPIE Advanced Lithography.

[30]  Bang-Chein Ho,et al.  Double exposure for the contact layer of the 65-nm node , 2005, SPIE Advanced Lithography.

[31]  Christopher K. Ober,et al.  Inorganic polymer resists for EUVL , 2005, SPIE Advanced Lithography.

[32]  Wenjie Li,et al.  193nm single layer photoresists: defeating tradeoffs with a new class of fluoropolymers , 2005, SPIE Advanced Lithography.

[33]  Yong Wang,et al.  Material design for immersion lithography with high refractive index fluid (HIF) , 2005, SPIE Advanced Lithography.

[34]  Ralph R. Dammel,et al.  Resist component leaching in 193-nm immersion lithography , 2005, SPIE Advanced Lithography.

[35]  Kim Dean,et al.  Newly developed polymer bound photoacid generator resist for sub-100-nm pattern by EUV lithography , 2005, SPIE Advanced Lithography.

[36]  L. Jay Guo,et al.  Recent progress in nanoimprint technology and its applications , 2004 .

[37]  Kenji Gamo,et al.  Novel Electron-Beam Molecular Resists with High Resolution and High Sensitivity for Nanometer Lithography , 2004 .

[38]  Martha I. Sanchez,et al.  Liquid immersion lithography: evaluation of resist issues , 2004, SPIE Advanced Lithography.

[39]  Shigeo Irie,et al.  A new monocyclic fluropolymer structure for 157-nm photoresists , 2004, SPIE Advanced Lithography.

[40]  Xing Cheng,et al.  One-step lithography for various size patterns with a hybrid mask-mold , 2004 .

[41]  Li-Jing Cheng,et al.  Nanoscale protein patterning by imprint lithography , 2004 .

[42]  William J. Dauksher,et al.  Imprint lithography: lab curiosity or the real NGL , 2003, SPIE Advanced Lithography.

[43]  Franco Cerrina,et al.  Synthesis and evaluation of novel organoelement resists for EUV lithography , 2003, SPIE Advanced Lithography.

[44]  Peter Strohriegl,et al.  Charge‐Transporting Molecular Glasses , 2002 .

[45]  Will Conley,et al.  Highly transparent resist platforms for 157-nm microlithography: an update , 2002, SPIE Advanced Lithography.

[46]  C. Willson,et al.  Microlithographic Assessment of a Novel Family of Transparent and Etch-Resistant Chemically Amplified 193-nm Resists Based on Cyclopolymers , 2001 .

[47]  Hiroshi Ito,et al.  Dissolution behavior of chemically amplified resist polymers for 248-, 193-, and 157-nm lithography , 2001, IBM J. Res. Dev..

[48]  Gregory Breyta,et al.  Polymer design for 157-nm chemically amplified resists , 2001, SPIE Advanced Lithography.

[49]  K. Gonsalves,et al.  Preparation of a Photoacid Generating Monomer and Its Application in Lithography , 2001 .

[50]  Hengpeng Wu,et al.  A Novel Single‐Component Negative Resist for DUV and Electron Beam Lithography , 2001 .

[51]  Juan J. de Pablo,et al.  Scaling of Tg and reaction rate with film thickness in photoresist: A thermal probe study , 2000 .

[52]  Hiroshi Ito,et al.  Dissolution/swelling behavior of cycloolefin polymers in aqueous base , 2000, Advanced Lithography.

[53]  Joo-Tae Moon,et al.  Design and synthesis of new photoresist materials for ArF lithography , 2000, Advanced Lithography.

[54]  Roderick R. Kunz,et al.  Outlook for 157 nm resist design , 1999 .

[55]  W. Hinsberg,et al.  Lithographic Imaging Techniques for the Formation of Nanoscopic Features. , 1999, Chemical reviews.

[56]  Bernard Choi,et al.  Step and flash imprint lithography: a new approach to high-resolution patterning , 1999, Advanced Lithography.

[57]  Munirathna Padmanaban,et al.  Cycloolefin-maleic anhydride copolymers for 193-nm resist compositions , 1999, Advanced Lithography.

[58]  U. Okoroanyanwu,et al.  Alicyclic Polymers for 193 nm Resist Applications: Synthesis and Characterization , 1998 .

[59]  Hiroshi Ito,et al.  Synthesis and Evaluation of Alicyclic Backbone Polymers for 193 nm Lithography , 1998 .

[60]  Elsa Reichmanis,et al.  Synthesis of Cycloolefin−Maleic Anhydride Alternating Copolymers for 193 nm Imaging , 1997 .

[61]  Hiroshi Ito,et al.  Chemical amplification resists: History and development within IBM , 1997, IBM J. Res. Dev..

[62]  Kenji Gamo,et al.  Novel class of low molecular‐weight organic resists for nanometer lithography , 1996 .

[63]  Richard A. Di Pietro,et al.  Limits to etch resistance for 193-nm single-layer resists , 1996, Advanced Lithography.

[64]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[65]  K. Naito Quantitative Relations between Glass Transition Temperatures and Thermodynamic Parameters for Various Materials: Molecular Design for Nonpolymeric Organic Dye Glasses with Thermal Stability , 1994 .

[66]  Shinji Okazaki,et al.  Nanometer-Scale Imaging Characteristics of Novolak Resin-Based Chemical Amplification Negative Resist Systems and Molecular-Weight Distribution Effects of the Resin Matrix , 1994 .

[67]  Naomichi Abe,et al.  Molecular Design and Synthesis of 3-Oxocyclohexyl Methacrylate for ArF and KrF Excimer Laser Resist , 1994 .

[68]  Wu-Song Huang,et al.  Evaluation of a new environmentally stable positive tone chemically amplified deep-UV resist , 1994, Advanced Lithography.

[69]  Roderick R. Kunz,et al.  Acid-catalyzed single-layer resists for ArF lithography , 1993, Advanced Lithography.

[70]  Shinji Okazaki,et al.  Nano edge roughness in polymer resist patterns , 1993 .

[71]  Naomichi Abe,et al.  Alicyclic polymer for ArF and KrF excimer resist based on chemical amplification , 1992, Advanced Lithography.

[72]  R. D. Allen,et al.  High performance acrylic polymers for chemically amplified photoresist applications , 1991 .

[73]  Toru Kajita,et al.  Novel novolak resins using substituted phenols for high-performance positive photoresist , 1991, Other Conferences.

[74]  Elsa Reichmanis,et al.  Chemical Amplification Mechanisms for Microlithography , 1991 .

[75]  Scott A. MacDonald,et al.  1X deep-UV lithography with chemical amplification for 1-micron DRAM production , 1990, Advanced Lithography.

[76]  Yasumasa Kawabe,et al.  Studies of the molecular mechanism of dissolution inhibition of positive photoresists based on novolac-DNQ , 1990, Advanced Lithography.

[77]  Tsuguo Yamaoka,et al.  Aqueous base developable novel deep-UV resist for KrF excimer laser lithography , 1990, Advanced Lithography.

[78]  Makoto Hanabata,et al.  Design concept for a high‐performance positive photoresist , 1989 .

[79]  Y. Ohnishi,et al.  Postirradiation polymerization of e‐beam negative resists: Theoretical analysis and method of inhibition , 1981 .

[80]  George G. Barclay,et al.  Design Consideration for Immersion 193: Embedded Barrier Layer and Pattern Collapse Margin , 2007 .

[81]  Gregory Breyta,et al.  Fundamental Properties of Fluoroalcohol-Methacrylate Polymers for use in 193nm Lithography , 2006 .

[82]  Andrew R. Romano,et al.  Responding to the Challenge: Materials Design for Immersion Lithography , 2006 .

[83]  R. Sooriyakumaran,et al.  Fluoroalcohol-Methacrylate Resists for 193nm Lithography , 2005 .

[84]  Hiroshi Ito Chemical amplification resists for microlithography , 2005 .

[85]  Gregory M. Wallraff,et al.  Design of Protective Topcoats for Immersion Lithography , 2005 .

[86]  Todd C. Bailey,et al.  Step and Flash Imprint Lithography: An Efficient Nanoscale Printing Technology , 2002 .

[87]  Dolores C. Miller,et al.  Fluoropolymers for 157/193nm Lithography: Chemistry, New Platform, Formulation Strategy, and Lithographic Evaluation , 2002 .

[88]  M. Thorpe,et al.  Properties and Applications of Amorphous Materials , 2001 .

[89]  J. Moon,et al.  A Novel Platform for Production-worthy ArF Resist , 2001 .

[90]  Dolores C. Miller,et al.  Fundamental Aspects of Norbornene-Maleic Anhydride Co- and Terpolymers for 193nm Lithography , 2000 .

[91]  Young-Gil Kwon,et al.  Adhesion-promoted copolymers for 193-nm photoresists without cross-linking during lithographic process , 2000 .

[92]  P. K. Bondyopadhyay,et al.  Moore's law governs the silicon revolution , 1998, Proc. IEEE.

[93]  R. Langendorf,et al.  Vitrigens. Part 2 : Low molecular weight organic systems with high glass transition temperatures , 1998 .

[94]  Robert A. Shick,et al.  Platform-Dependent Properties of 193nm Single Layer Resists , 1998 .

[95]  R. D. Allen,et al.  PROGRESS IN 193nm POSITIVE RESISTS , 1996 .

[96]  R. D. Allen,et al.  RESOLUTION AND ETCH RESISTANCE OF A FAMILY OF 193nm POSITIVE RESISTS , 1995 .

[97]  R. D. Allen,et al.  SINGLE LAYER RESISTS WITH ENHANCED ETCH RESISTANCE FOR 193nm LITHOGRAPHY , 1994 .

[98]  K. Petrillo,et al.  ENVIRONMENTALLY STABLE CHEMICAL AMPLIFICATION POSITIVE RESIST: PRINCIPLE, CHEMISTRY, CONTAMINATION RESISTANCE, AND LITHOGRAPHIC FEASIBILITY , 1994 .

[99]  Makoto Hanabata,et al.  Novolak Design For High Resolution Positive Photoresists(II): Stone Wall Model For Positive Photoresist Development , 1988, Advanced Lithography.

[100]  J. R. Lyerla,et al.  Photochemical decomposition mechanisms for AZ-type photoresists , 1979 .

[101]  Oskar Süs,et al.  Über die Natur der Belichtungsprodukte von Diazoverbindungen. Übergänge von aromatischen 6-Ringen in 5-Ringe , 1944 .