Cooperative Unscented Kalman Filler with Bank of Scaling Parameter Values

This paper is devoted to the Bayesian state estimation of the nonlinear stochastic dynamic systems. The stress is laid on Gaussian unscented Kalnian filter (UKF) and, in particular, on a setting of its scaling parameter, which significantly affects the UKF estimation performance. Compared to the standard UKF design, where one scaling parameter per a time instant is selected, the proposed cooperative UKF combines estimates of the set of UKFs each designed with different value of the scaling parameter. The cooperative UKF reformulates the UKF scaling parameter selection task as the multiple model approach, which allows to extract more information from the measurement to provide estimates of better quality as indicated by the numerical simulations.

[1]  U. Hanebeck,et al.  LRKF Revisited: The Smart Sampling Kalman Filter (S2KF) , 2015 .

[2]  Ondřej Straka,et al.  Unscented Kalman Filter with Controlled Adaptation , 2012 .

[3]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[4]  Jindrich Duník,et al.  Derivative-free estimation methods: New results and performance analysis , 2009, Autom..

[5]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[6]  Ondrej Straka,et al.  Unscented Kalman filter with advanced adaptation of scaling parameter , 2014, Autom..

[7]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[8]  Carl E. Rasmussen,et al.  Model based learning of sigma points in unscented Kalman filtering , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[9]  Erik Blasch,et al.  From competitive to cooperative filter design , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[10]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[11]  Ondrej Straka,et al.  Unscented Kalman Filter: Aspects and Adaptive Setting of Scaling Parameter , 2012, IEEE Transactions on Automatic Control.

[12]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[13]  S Julier,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" - Reply , 2002 .

[14]  J. Duník,et al.  Solution Separation Unscented Kalman Filter , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[15]  Ondrej Straka,et al.  Stochastic Integration Filter , 2013, IEEE Transactions on Automatic Control.

[16]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[17]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[18]  Uwe D. Hanebeck,et al.  S2KF: The Smart Sampling Kalman Filter , 2013, Proceedings of the 16th International Conference on Information Fusion.

[19]  José Jaime da Cruz,et al.  Adaptively Tuning the Scaling Parameter of the Unscented Kalman Filter , 2015 .

[20]  Ondrej Straka,et al.  State estimate consistency monitoring in Gaussian filtering framework , 2018, Signal Process..