Mixture Augmented Lagrange Multiplier Method for Tensor Recovery and Its Applications

The problem of data recovery inmultiway arrays (i.e., tensors) arises in many fields such as computer vision, image processing, and traffic data analysis. In this paper, we propose a scalable and fast algorithm for recovering a low-n-rank tensor with an unknown fraction of its entries being arbitrarily corrupted. In the new algorithm, the tensor recovery problem is formulated as a mixture convex multilinear Robust Principal Component Analysis (RPCA) optimization problem by minimizing a sum of the nuclear norm and the l(1)-norm. The problem is well structured in both the objective function and constraints. We apply augmented Lagrange multiplier method which can make use of the good structure for efficiently solving this problem. In the experiments, the algorithm is compared with the state-of-art algorithm both on synthetic data and real data including traffic data, image data, and video data.

[1]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[2]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[3]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[4]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[5]  Guangdong Feng,et al.  A Tensor Based Method for Missing Traffic Data Completion , 2013 .

[6]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[7]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[8]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[9]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[10]  Asuman E Ozdaglar,et al.  Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization , 2002 .

[11]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[12]  Adrian S. Lewis,et al.  Image compression using the 2-D wavelet transform , 1992, IEEE Trans. Image Process..

[13]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[14]  Yin Li,et al.  Optimum Subspace Learning and Error Correction for Tensors , 2010, ECCV.

[15]  Tamara G. Kolda,et al.  Scalable Tensor Factorizations for Incomplete Data , 2010, ArXiv.

[16]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[17]  Guangdong Feng,et al.  Traffic volume data outlier recovery via tensor model , 2013 .

[18]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[20]  Yang Zhang,et al.  Missing traffic flow data prediction using least squares support vector machines in urban arterial streets , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[21]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[22]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[23]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[24]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[26]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[27]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[28]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.