Galerkin time-stepping methods for nonlinear parabolic equations
暂无分享,去创建一个
[1] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[2] Vidar Thomée,et al. An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem , 1990 .
[3] Donald Estep,et al. The discontinuous Galerkin method for semilinear parabolic problems , 1993 .
[4] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[5] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[6] James H. Bramble,et al. Efficient Higher Order Single Step Methods for Parabolic Problems. Part I. , 1980 .
[7] Kenneth Eriksson,et al. Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups , 1998 .
[8] Ivo Babuška,et al. On the Stability of the Discontinuous Galerkin Method for the Heat Equation , 1997 .
[9] Charalambos Makridakis,et al. Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations , 2004, Math. Comput..
[10] Charalambos Makridakis,et al. A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..
[11] Kenneth Eriksson,et al. Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .
[12] Peter Monk,et al. Continuous finite elements in space and time for the heat equation , 1989 .
[13] C. Makridakis,et al. CONVERGENCE OF A TIME DISCRETE GALERKIN METHOD FOR SEMILINEAR PARABOLIC EQUATIONS , 2002 .
[14] Michel Crouzeix,et al. Linearly implicit methods for nonlinear parabolic equations , 2003, Math. Comput..
[15] Charalambos Makridakis,et al. A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .
[16] Claes Johnson. Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .
[17] Ricardo H. Nochetto,et al. A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..
[18] A. H. Schatz,et al. Interior maximum-norm estimates for finite element methods, part II , 1995 .
[19] Claes Johnson,et al. Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .
[20] F. Browder,et al. Nonlinear integral equations and systems of Hammerstein type , 1975 .
[21] Charalambos Makridakis,et al. Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.
[22] Charalambos Makridakis,et al. Implicit-explicit multistep finite element methods for nonlinear parabolic problems , 1998, Math. Comput..
[23] James H. Bramble,et al. Semidiscrete and single step fully discrete approximations for second order hyperbolic equations , 1979 .
[24] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[25] Claes Johnson,et al. Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .
[26] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[27] Shinichi Kawahara. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .