Galerkin time-stepping methods for nonlinear parabolic equations

We consider discontinuous as well as continuous Galerkin methods for the time discretiza- tion of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity ap riorierror estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation. Mathematics Subject Classification. 65M15, 65M50.

[1]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[2]  Vidar Thomée,et al.  An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem , 1990 .

[3]  Donald Estep,et al.  The discontinuous Galerkin method for semilinear parabolic problems , 1993 .

[4]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[5]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[6]  James H. Bramble,et al.  Efficient Higher Order Single Step Methods for Parabolic Problems. Part I. , 1980 .

[7]  Kenneth Eriksson,et al.  Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups , 1998 .

[8]  Ivo Babuška,et al.  On the Stability of the Discontinuous Galerkin Method for the Heat Equation , 1997 .

[9]  Charalambos Makridakis,et al.  Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations , 2004, Math. Comput..

[10]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[11]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[12]  Peter Monk,et al.  Continuous finite elements in space and time for the heat equation , 1989 .

[13]  C. Makridakis,et al.  CONVERGENCE OF A TIME DISCRETE GALERKIN METHOD FOR SEMILINEAR PARABOLIC EQUATIONS , 2002 .

[14]  Michel Crouzeix,et al.  Linearly implicit methods for nonlinear parabolic equations , 2003, Math. Comput..

[15]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[16]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[17]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[18]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[19]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[20]  F. Browder,et al.  Nonlinear integral equations and systems of Hammerstein type , 1975 .

[21]  Charalambos Makridakis,et al.  Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.

[22]  Charalambos Makridakis,et al.  Implicit-explicit multistep finite element methods for nonlinear parabolic problems , 1998, Math. Comput..

[23]  James H. Bramble,et al.  Semidiscrete and single step fully discrete approximations for second order hyperbolic equations , 1979 .

[24]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[25]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .

[26]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[27]  Shinichi Kawahara Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .