Feasibility study of a hybrid subcritical fission system driven by Plasma-Focus fusion neutrons

[1]  L. Borst THE CONVERGATRON, A NEUTRON AMPLIFIER , 1957 .

[2]  B. G. Dubovskii Sectionalized reactor systems , 1961 .

[3]  D. Hetrick,et al.  Dynamics of nuclear reactors , 1972 .

[4]  P. Zweifel,et al.  Reactor physics , 1973 .

[5]  H. Bethe The fusion hybrid , 1979 .

[6]  M. G. Tyagunov,et al.  Possible Applications of a Hybrid Thermonuclear Energy Source Based on a DPF Device in Modern Energy Complexes , 1983 .

[7]  J. F. Briesmeister MCNP-A General Monte Carlo N-Particle Transport Code , 1993 .

[8]  H. Daniel,et al.  Subcritical fission reactor driven by the low power accelerator , 1996 .

[9]  C. S. Wong,et al.  Scientific status of plasma focus research , 1998 .

[10]  W. Stacey Nuclear Reactor Physics , 2001 .

[11]  V. Zoita,et al.  A fusion-fission hybrid reactor driven by high-density pinch plasmas , 2001 .

[12]  J. Mattingly Plutonium Attribute Estimation From Passive NMIS Measurements at VNIIEF , 2002 .

[13]  A. Clausse,et al.  Industrial applications of plasma focus radiation , 2002 .

[14]  M. Paduch,et al.  Review of Recent Experiments with the Megajoule PF-1000 Plasma Focus Device , 2002 .

[15]  H. Nifenecker,et al.  ACCELERATOR DRIVEN SUBCRITICAL REACTORS. , 2003 .

[16]  V. Kolesov,et al.  Kinetics of Aperiodic Cascade Boosters: Speed of Operation and Safety , 2003 .

[17]  A. Gulevich,et al.  Multipurpose electron accelerator driven electronuclear system based on a subcritical cascade reactor , 2007 .

[18]  S. N. Polukhin,et al.  Saturation of the neutron yield from megajoule plasma focus facilities , 2007 .

[19]  L. Soto,et al.  Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules , 2008 .

[20]  A. Krasnykh,et al.  Conception of electron beam‐driven subcritical molten salt ultimate safety reactor , 2008 .

[21]  J. Freidberg,et al.  Fusion–fission hybrids revisited , 2009 .

[22]  E. Schneider,et al.  Fusion-Fission Transmutation Scheme-Efficient Destruction of Nuclear Waste , 2012 .

[23]  E. Gerstner Nuclear energy: The hybrid returns , 2009, Nature.

[24]  A. Clausse,et al.  Modeling of the Dynamic Plasma Pinch in Plasma Focus Discharges Based in Von Karman Approximations , 2009, IEEE Transactions on Plasma Science.

[25]  Sing H. Lee,et al.  Neutron yield saturation in plasma focus: A fundamental cause , 2009 .

[26]  L. Soto,et al.  Studies on scalability and scaling laws for the plasma focus: similarities and differences in devices from 1 MJ to 0.1 J , 2010 .

[27]  Jae-Yong Lim,et al.  Subcritical multiplication factor and source efficiency in accelerator-driven system , 2010 .

[28]  V. Moiseenko,et al.  Stellarator-Mirror Based Fusion Driven Fission Reactor , 2010 .

[29]  Michel-Alexandre Cardin,et al.  Minimising the economic cost and risk to accelerator-driven subcritical reactor technology: The case of designing for flexibility: Part 1 , 2012 .

[30]  Feng Wang,et al.  Physics Analysis of the Accelerator Driven Subcritical Reactor Core , 2013 .

[31]  A. Tkaczyk,et al.  Cost optimization of ADS design: Comparative study of externally driven heterogeneous and homogeneous two-zone subcritical reactor systems , 2014 .

[32]  Chaohui He,et al.  Design and analysis of nuclear battery driven by the external neutron source , 2014 .

[33]  A. Sinha,et al.  BRAHMMA: A compact experimental accelerator driven subcritical facility using D-T/D-D neutron source , 2015 .