Analysis of some Krylov subspace methods for normal matrices via approximation theory and convex optimization
暂无分享,去创建一个
[1] Y. Saad,et al. ON THE CONVERGENCE OF THE ARNOLDI PROCESS FOR EIGENVALUE PROBLEMS , 2007 .
[2] R. Fletcher. Practical Methods of Optimization , 1988 .
[3] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[4] G. Stewart. Collinearity and Least Squares Regression , 1987 .
[5] Jörg Liesen,et al. The Worst-Case GMRES for Normal Matrices , 2004 .
[6] H. S. Shapiro,et al. A Unified Approach to Certain Problems of Approximation and Minimization , 1961 .
[7] Wayne Joubert,et al. A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..
[8] J. Magnus,et al. Matrix Differential Calculus with Applications , 1988 .
[9] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[10] Dianne P. O'Leary,et al. Complete stagnation of gmres , 2003 .
[11] G. Lorentz. Approximation of Functions , 1966 .
[12] D. W. Lewis. Matrix theory , 1991 .
[13] Hassane Sadok,et al. Analysis of the convergence of the minimal and the orthogonal residual methods , 2005, Numerical Algorithms.
[14] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[15] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[16] J. Liesen,et al. Least Squares Residuals and Minimal Residual Methods , 2001, SIAM J. Sci. Comput..
[17] Anne Greenbaum,et al. Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..
[18] Ilse C. F. Ipsen. Expressions and Bounds for the GMRES Residual , 2000, Bit Numerical Mathematics.