Simple and Accurate Error Probability Evaluation of Multiple-Input–Multiple-Output Systems Using Optimum Linear Combining

This correspondence motivates simple and accurate evaluation of the error probability of multiantenna multiple-input-multiple-output (MIMO) systems using optimum linear combining (OLC). Using both the first- and second-order statistics of the eigenvalues involved, we propose an Order-2 approximation approach (i.e., Gamma-approximation), which approximates the related eigenvalues as independent gamma-distributed random variables. Our analysis shows that the proposed Order-2 approximation results in simple formulas that are convenient to evaluate. The performance examples show that the error probability evaluated using the derived formulas is accurate and usually indistinguishable from that obtained by simulations.

[1]  Lie-Liang Yang,et al.  Error probability of digital communications using relay diversity over Nakagami-m fading channels , 2008, IEEE Transactions on Wireless Communications.

[2]  Moe Z. Win,et al.  Error probability for optimum combining of M-ary PSK signals in the presence of interference and noise , 2003, IEEE Trans. Commun..

[3]  P. W. Baier,et al.  Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels , 1996 .

[4]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[5]  Ranjan K. Mallik,et al.  Bit-error probability for optimum combining of binary signals in the presence of interference and noise , 2004, IEEE Transactions on Wireless Communications.

[6]  J.H. Winters,et al.  Optimum combining in digital mobile radio with cochannel interference , 1984, IEEE Transactions on Vehicular Technology.

[7]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[8]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[9]  Jack H. Winters,et al.  Upper bounds on the bit-error rate of optimum combining in wireless systems , 1998, IEEE Trans. Commun..

[10]  John G. Proakis,et al.  Digital Communications , 1983 .

[11]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[12]  Alexander M. Haimovich,et al.  Exact bit-error probability for optimum combining with a Rayleigh fading Gaussian cochannel interferer , 2000, IEEE Trans. Commun..

[13]  M. Nakagami The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading , 1960 .

[14]  Jack H. Winters,et al.  Smart antennas for wireless systems , 1998, IEEE Wirel. Commun..

[15]  Ranjan K. Mallik,et al.  Bounds and approximations for optimum combining of signals in the presence of multiple cochannel interferers and thermal noise , 2003, IEEE Trans. Commun..

[16]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[17]  H. Vincent Poor,et al.  Probability of error in MMSE multiuser detection , 1997, IEEE Trans. Inf. Theory.

[18]  S. E. Ahmed,et al.  Handbook of Statistical Distributions with Applications , 2007, Technometrics.

[19]  Keith G. Balmain,et al.  Multipath performance of adaptive antennas with multiple interferers and correlated fadings , 1999 .

[20]  P. M. Grant,et al.  Digital communications. 3rd ed , 2009 .

[21]  Upamanyu Madhow,et al.  MMSE interference suppression for direct-sequence spread-spectrum CDMA , 1994, IEEE Trans. Commun..