Metals, Energetic Additives, and Special Binders Used in Solid Fuels for Hybrid Rockets

R low mass and linear regression rates of solid fuels have been among the major drawbacks of classical hybrid rocket engine technology due to low density, inertness of conventional solid fuels, and the diffusion-controlled combustion process. The thermal degradation in the pyrolysis process of inert polymeric fuels has been considered to be one of the key processes occurring in hybrid rocket engines and solid-fuel ramjet engines [1]. The fuel-surface regression rate generated by this process is a very important design and performance parameter and is strongly affected by the operating conditions and the composition and thermophysical properties of the solid fuel. In addition, fluid dynamic, heat-transfer, and combustion processes in these solid-fuel systems are characterized by complex interactions involving numerous physical phenomena, simultaneously taking place in the combustion chamber and the fuel grain. These complex interactions include solid-fuel pyrolysis; metal vaporization for metallized solid fuels; oxidizer atomization and vaporization; gas-phase species mass diffusion; mixing and combustion between the fuel-rich and oxidizer-rich species; turbulent flow with mass addition; conductive, convective, and radiative energy transfer; and time-varying

[1]  Norbert Eisenreich,et al.  Burning Behaviour of Gas Generators with High Boron Content , 1992 .

[2]  James Nabity,et al.  COMBUSTION BEHAVIOR OF BORON CARBIDE FUEL IN SOLID FUEL RAMJETS , 1991 .

[3]  Curtis McNeal,et al.  Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of the Hydrogen Peroxide Hybrid Upper Stage Program , 2001 .

[4]  Grant A. Risha,et al.  Regression Rate Behavior of Hybrid Rocket Solid Fuels , 2000 .

[5]  L. D. Strand,et al.  Hybrid rocket combustion study , 1993 .

[6]  D. W. Netzer,et al.  Combustion studies of metallized fuels for solid-fuel ramjets , 1986 .

[7]  Grant A. Risha,et al.  Combustion of HTPB-Based Solid Fuels Containing Nano-sized Energetic Powder in a Hybrid Rocket Motor , 2001 .

[8]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[9]  J. Patton,et al.  A Thrust and Impulse Study of Guanidinium Azo-Tetrazolate as an Additive for Hybrid Rocket Fuel , 1999 .

[10]  Terry Abel,et al.  Development and testing of a peroxide hybrid upper stage propulsion system , 2001 .

[11]  Rodney L. Burton,et al.  Combustion of aluminum particles in solid rocket motor flows , 1999 .

[12]  G. Marxman,et al.  Turbulent boundary layer combustion in the hybrid rocket , 1963 .

[13]  Benveniste Natan,et al.  The Starting Transient in a Gas-Generator Hybrid Rocket Motor , 2000 .

[14]  L. S. Bouck,et al.  Pyrolysis and oxidation of polymers at high heating rates , 1973 .

[15]  Yutaka Yano Combustion characteristics of a small-scale, tactical hybrid rocket propulsion system , 2001 .

[16]  J. De Wilde A fuel pyrolysis model for combustion calculations , 1991 .

[17]  Thomas B. Brill,et al.  Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions , 1991 .

[18]  V. N. Krishnamurthy,et al.  Thermogravimetric and mass-spectrometric study of the thermal decomposition of PBCT resins , 1979 .

[19]  Alon Gany,et al.  Effects of bypass air on boron combustion in solid fuel ramjets , 1993 .

[20]  Kenneth K. Kuo,et al.  Nano-Sized Aluminum and Boron-Based Solid Fuel Characterization in a Hybrid Rocket Engine , 2003 .

[21]  L. D. Smoot,et al.  Regression rates of nonmetalized hybrid fuel systems , 1965 .

[22]  Franklin Mead,et al.  Early developments in hybrid propulsion technology at the Air Force Rocket Propulsion Laboratory , 1995 .

[23]  N. Cohen,et al.  Role of Binders in Solid Propellant Combustion , 1974 .

[24]  S. Krishnan,et al.  Fuel regression rate enhancement studies in HTPB/GOX hybrid rocket motors , 1998 .

[25]  Siegfried Eisele,et al.  Gas Generator Materials Consisting of TAGN and Polymeric Binders , 1992 .

[26]  L. D. Strand,et al.  Hybrid rocket fuel combustion and regression rate study , 1992 .

[27]  Kenneth K. Kuo,et al.  Performance comparison of HTPB-based solid fuels containing nano-sized energetic powder in a cylindrical hybrid rocket motor , 2002 .

[28]  K. Krishnan,et al.  Thermoanalytical Investigations on the Effect of Atmospheric Oxygen on HTPB resin , 1996 .

[29]  C. E. Wooldridge,et al.  Fundamentals of Hybrid Boundary-Layer Combustion , 1963 .

[30]  Kenneth K. Kuo,et al.  CHARACTERIZATION OF SOLID FUEL MASS-BURNING ENHANCEMENT UTILIZING AN X-RAY TRANSLUCENT HYBRID ROCKET MOTOR , 2005 .

[31]  Takashi Nakajima,et al.  A NEW ERA OF THE HYBRID ROCKET , 2000 .

[32]  Grant A. Risha,et al.  Instantaneous Regression Rate Determination of a Cylindrical X-Ray Transparent Hybrid Rocket Motor , 2003 .

[33]  C. E. Wooldridge,et al.  Fundamentals of Hybrid Boundary-Layer Combustion , 1964 .

[34]  Grant Alexander Risha Enhancement of hybrid rocket combustion performance using nano-sized energetic particles , 2003 .

[35]  Robert Frederick,et al.  Ammonium nitrate-based solid fuel gas generator for gas hybrid rockets , 1996 .

[36]  G. Marxman,et al.  Combustion in the turbulent boundary layer on a vaporizing surface , 1965 .

[37]  Greg Zilliac,et al.  SCALE-UP TESTS OF HIGH REGRESSION RATE LIQUEFYING HYBRID ROCKET FUELS , 2003 .

[38]  R. F. Mcalevy,et al.  Linear pyrolysis of thermoplastics in chemically reactive environments , 1964 .

[39]  R. F. Chaiken,et al.  Kinetics of the Surface Degradation of Polymethylmethacrylate , 1960 .

[40]  K. Kishore,et al.  Comprehensive view of the combustion models of composite solid propellants , 1979 .

[41]  Martin John Chiaverini Regression rate and pyrolysis behavior of HTPB-based solid fuels in a hybrid rocket motor , 1997 .

[42]  Martin J. Chiaverini,et al.  Development and testing of a vortex-driven, high-regression rate hybrid rocket engine , 1998 .

[43]  Kenneth K. Kuo,et al.  INSTANTANEOUS REGRESSION BEHAVIOR OF HTPB SOLID FUELS BURNING WITH GOX IN A SIMULATED HYBRID ROCKET MOTOR , 1997 .

[44]  H. Lips,et al.  Metal combustion in high performance hybrid rocket propulsion systems , 1976 .

[45]  Kenneth K. Kuo,et al.  Study of Solid Fuel Burning-Rate Enhancement Behavior in an X-ray Translucent Hybrid Rocket Motor , 2005 .

[46]  Walter H. Beck,et al.  Pyrolysis studies of polymeric materials used as binders in composite propellants: A review , 1987 .

[47]  Kenneth K. Kuo,et al.  Characterization of Nano-Sized Energetic Particle Enhancement of Solid-Fuel Burning Rates in an X-Ray Transparent Hybrid Rocket Engine , 2004 .

[48]  Martin J. Chiaverini,et al.  Thermal pyrolysis and combustion of HTPB-based solid fuels for hybrid rocket motor applications , 1996 .

[49]  George C. Harting,et al.  Regression-Rate and Heat-Transfer Correlations for Hybrid Rocket Combustion , 2001 .

[50]  C. Fong,et al.  The mechanism of burning rate catalysis in composite HTPBAP propellant combustion , 1986 .

[51]  L. D. Strand,et al.  Characterization of Mybrid Rocket Internal Heat Flux and HTPB Fuel Pyrolysis , 1994 .

[52]  H. Lips,et al.  Experimental Investigation on Hybrid Rocket Engines Using Highly Aluminized Fuels , 1977 .

[53]  R. F. Mcalevy,et al.  ENERGETICS AND CHEMICAL KINETICS OF POLYSTYRENE SURFACE DEGRADATION IN INERT AND CHEMICALLY REACTIVE ENVIRONMENTS. , 1965 .

[54]  N. Grassie,et al.  Chemistry of high polymer degradation processes , 1956 .

[55]  Alon Gany,et al.  Combustion Characteristics of a Boron-Fueled Solid Fuel Ramjet with Aft-Burner , 1993 .

[56]  H. Lips,et al.  Heterogeneous Combustion of Highly Aluminized Hybrid Fuels , 1977 .

[57]  Grant A. Risha,et al.  Characterization of Nano-Sized Particles for Propulsion Applications , 2003 .

[58]  Alon Gany,et al.  COMBUSTION OF BORON-CONTAINING FUELS IN SOLID FUEL RAMJETS , 1991 .

[59]  A. D. Baer,et al.  Oxidative decomposition of PBAA polymer at high heating rates , 1969 .

[60]  Benveniste Natan,et al.  EXPERIMENTAL INVESTIGATION OF THE EFFECT OF BYPASS AIR ON BORON COMBUSTION IN A SOLID FUEL RAMJET , 1991 .

[61]  David Altman,et al.  Hybrid rocket development history , 1991 .