Local estimation of the noise level in MRI using structural adaptation

We present a method for local estimation of the signal-dependent noise level in magnetic resonance images. The procedure uses a multi-scale approach to adaptively infer on local neighborhoods with similar data distribution. It exploits a maximum-likelihood estimator for the local noise level. The validity of the method was evaluated on repeated diffusion data of a phantom and simulated data using T1-data corrupted with artificial noise. Simulation results were compared with a recently proposed estimate. The method was also applied to a high-resolution diffusion dataset to obtain improved diffusion model estimation results and to demonstrate its usefulness in methods for enhancing diffusion data.

[1]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[2]  Santiago Aja-Fernández,et al.  Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. , 2009, Magnetic resonance imaging.

[3]  J. Sijbers,et al.  Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. , 2012, Magnetic resonance imaging.

[4]  J. Polzehl,et al.  Propagation-Separation Approach for Local Likelihood Estimation , 2006 .

[5]  Jerry L Prince,et al.  Estimation and application of spatially variable noise fields in diffusion tensor imaging. , 2009, Magnetic resonance imaging.

[6]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[7]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[8]  S. Aja‐Fernández,et al.  Influence of noise correlation in multiple‐coil statistical models with sum of squares reconstruction , 2012, Magnetic resonance in medicine.

[9]  Christophe Phillips,et al.  Influence of Noise Correction on Intra- and Inter-Subject Variability of Quantitative Metrics in Diffusion Kurtosis Imaging , 2014, PloS one.

[10]  Santiago Aja-Fernández,et al.  Noise estimation in parallel MRI: GRAPPA and SENSE. , 2014, Magnetic resonance imaging.

[11]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[12]  J. Sijbers,et al.  Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model , 2011, Magnetic resonance in medicine.

[13]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[14]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[15]  Rachid Deriche,et al.  Constrained diffusion kurtosis imaging using ternary quartics & MLE , 2014, Magnetic resonance in medicine.

[16]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[17]  Cheng Guan Koay,et al.  Investigation of anomalous estimates of tensor‐derived quantities in diffusion tensor imaging , 2006, Magnetic resonance in medicine.

[18]  Thomas R. Knösche,et al.  k-space and q-space: Combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T , 2012, NeuroImage.

[19]  J. Sijbers,et al.  More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging , 2011, Magnetic resonance in medicine.

[20]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[21]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[22]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[23]  Santiago Aja-Fernández,et al.  Effective noise estimation and filtering from correlated multiple-coil MR data. , 2013, Magnetic resonance imaging.

[24]  Marcos Martín-Fernández,et al.  Automatic noise estimation in images using local statistics. Additive and multiplicative cases , 2009, Image Vis. Comput..

[25]  Bennett A Landman,et al.  Robust estimation of spatially variable noise fields , 2009, Magnetic resonance in medicine.

[26]  Nikolaus Weiskopf,et al.  Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS , 2014, NeuroImage.

[27]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[28]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[29]  R. Goebel,et al.  Ground truth hardware phantoms for validation of diffusion‐weighted MRI applications , 2010, Journal of magnetic resonance imaging : JMRI.

[30]  W. Hoge,et al.  Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model , 2011, Magnetic resonance in medicine.

[31]  Timothy Edward John Behrens,et al.  Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: Reducing the noise floor using SENSE , 2013, Magnetic resonance in medicine.

[32]  Alan C. Evans,et al.  A general statistical analysis for fMRI data , 2000, NeuroImage.

[33]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[34]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[35]  Thorsten Feiweier,et al.  Evaluation of a Modified Stejskal-Tanner Diffusion Encoding Scheme, Permitting a Marked Reduction in TE, in Diffusion-Weighted Imaging of Stroke Patients at 3 T , 2010, Investigative radiology.

[36]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[37]  Norbert Schuff,et al.  Improved diffusion imaging through SNR‐enhancing joint reconstruction , 2013, Magnetic resonance in medicine.

[38]  P. Basser,et al.  Statistical artifacts in diffusion tensor MRI (DT‐MRI) caused by background noise , 2000, Magnetic resonance in medicine.

[39]  Alfred Anwander,et al.  Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS) , 2012, Medical Image Anal..

[40]  Carl-Fredrik Westin,et al.  Restoration of DWI Data Using a Rician LMMSE Estimator , 2008, IEEE Transactions on Medical Imaging.

[41]  E. McVeigh,et al.  Signal‐to‐noise measurements in magnitude images from NMR phased arrays , 1997 .