Chromatic adaptation for robust visual navigation

This paper analyzes the effects of the application of visual adaptation mechanisms on snapshot-based guidance methods. The guidance principle of the visual homing is proven to be a visual potential function with an equilibrium point located at the goal position. The presence of a potential function means that classical control theory principles based on the Lyapunov functions can be applied to assess the robustness of the navigation strategy. The Retinex algorithm, a blind chromatic equalization pre-filtering that performs color constancy with no a priori information about the illuminant, is proposed as an unsupervised visual adaptation mechanism. It increases the visual information similarity under changes in the illuminant, thus increasing the robustness of the visual guidance. Tests and comparisons are presented.

[1]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[2]  Alessandro Rizzi,et al.  Guidance principle and robustness issues for a biologically-inspired visual homing , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[3]  Hobart R. Everett,et al.  Where am I?" sensors and methods for mobile robot positioning , 1996 .

[4]  Mark S. Drew,et al.  Color constancy from mutual reflection , 1991, International Journal of Computer Vision.

[5]  Alessandro Saffiotti,et al.  Robust Execution of Robot Plans Using Fuzzy Logic , 1993, Fuzzy Logic in Artificial Intelligence.

[6]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[7]  Alessandro Rizzi,et al.  A bee-inspired robot visual homing method , 1997, Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots.

[8]  Alexander Zelinsky,et al.  Range and pose estimation for visual servoing of a mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[10]  J. Pan,et al.  FUZZY NAV A Vision Based Robot Navigation Architecture using Fuzzy Inference for Uncertainty Reasoning , 1995 .

[11]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[12]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[13]  Alexander Zelinsky,et al.  Biologically-inspired visual landmark learning and navigation for mobile robots , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[14]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[15]  Graham D. Finlayson,et al.  Color by Correlation , 1997, CIC.

[16]  John J. McCann,et al.  Lessons Learned from Mondrians Applied to Real Images and Color Gamuts , 1999, CIC.

[17]  Randolf Menzel,et al.  Color Vision in Honeybees: Metric, Dimensions, Constancy, and Ecological Aspects , 1987 .

[18]  B. Wandell,et al.  Standard surface-reflectance model and illuminant estimation , 1989 .

[19]  Alexander Zelinsky,et al.  Visual landmark learning , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[20]  David L. MacAdam,et al.  Sources of Color Science , 1972 .

[21]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[22]  Alessandro Rizzi,et al.  A bee-inspired visual homing using color images , 1998, Robotics Auton. Syst..

[23]  Rodney M. Goodman,et al.  A real-time neural system for color constancy , 1991, IEEE Trans. Neural Networks.

[24]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[25]  Kurt Konolige,et al.  Integrating reactivity and goal-directedness in a fuzzy controller , 1993 .

[26]  Clark F. Olson,et al.  Robust stereo ego-motion for long distance navigation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[28]  E. Marg A VISION OF THE BRAIN , 1994 .

[29]  Christian Balkenius Spatial learning with perceptually grounded representations , 1998, Robotics Auton. Syst..

[30]  Alessandro Rizzi,et al.  A Computational Approach to Color Illusions , 1997, ICIAP.

[31]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[32]  S. Sutherland Eye, brain and vision , 1993, Nature.

[33]  Alessandro Rizzi,et al.  Color constancy effects measurement of the Retinex theory , 1998, Electronic Imaging.