Indentation properties and glycosaminoglycan content of human menisci in the deep zone.

Menisci are two crescent shaped fibrocartilaginous structures that provide fundamental load distribution and support within the knee joint. Their unique shape transmits axial stresses (i.e. "body force") into hoop or radial stresses. The menisci are primarily an inhomogeneous aggregate of glycosaminoglycans (GAGs) supporting bulk compression and type I collagen fibrils sustaining tension. It has been shown that the superficial meniscal layers are functionally homogeneous throughout the three distinct regions (anterior, central and posterior) using a 300 μm diameter spherical indenter tip, but the deep zone of the meniscus has yet to be mechanically characterized at this scale. Furthermore, the distribution and content of GAG throughout the human meniscal cross-section have not been examined. This study investigated the mechanical properties, via indentation, of the human deep zone meniscus among three regions of the lateral and medial menisci. The distribution of GAGs through the cross-section was also documented. Results for the deep zone of the meniscus showed the medial posterior region to have a significantly greater instantaneous elastic modulus than the central region. No significant differences in the equilibrium modulus were seen when comparing regions or the hemijoint. Histological results revealed that GAGs are not present until at least ~600 μm from the meniscal surface. Understanding the role and distribution of GAG within the human meniscus in conjunction with the material properties of the meniscus will aid in the design of tissue engineered meniscal replacements.

[1]  K. Shinki,et al.  MR diagnosis of posterior root tears of the lateral meniscus using arthroscopy as the reference standard. , 2009, AJR. American journal of roentgenology.

[2]  C. R. Edwards,et al.  Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. , 2011, Journal of the mechanical behavior of biomedical materials.

[3]  Kyriacos A Athanasiou,et al.  The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. , 2011, Biomaterials.

[4]  N. Choi,et al.  Arthroscopic all-inside repair for a tear of posterior root of the medial meniscus: a technical note , 2008, Knee Surgery, Sports Traumatology, Arthroscopy.

[5]  A. M. Ahmed,et al.  In-vitro measurement of static pressure distribution in synovial joints--Part I: Tibial surface of the knee. , 1983, Journal of biomechanical engineering.

[6]  Spherical indentation creep following ramp loading , 2005 .

[7]  J. Bertram,et al.  Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage , 2010, BMC musculoskeletal disorders.

[8]  N. Shrive,et al.  Load-bearing in the knee joint. , 1978, Clinical orthopaedics and related research.

[9]  K. Athanasiou,et al.  Regional variation in the mechanical role of knee meniscus glycosaminoglycans. , 2011, Journal of applied physiology.

[10]  Robert L Sah,et al.  A nonlinear constituent based viscoelastic model for articular cartilage and analysis of tissue remodeling due to altered glycosaminoglycan-collagen interactions. , 2009, Journal of biomechanical engineering.

[11]  T. H. Haut Donahue,et al.  A Quantitative Study of the Microstructure and Biochemistry of the Medial Meniscal Horn Attachments , 2007, Annals of Biomedical Engineering.

[12]  M. Oyen Sensitivity of polymer nanoindentation creep measurements to experimental variables , 2007 .

[13]  Michelle L. Oyen,et al.  Nanoindentation of biological and biomimetic materials , 2013, Experimental Techniques.

[14]  N. Paschos,et al.  Simultaneous bicompartmental bucket-handle meniscal tears with intact anterior cruciate ligament: a case report , 2010, Journal of medical case reports.

[15]  M. Englund,et al.  Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury--a prospective cohort study. , 2009, Osteoarthritis and cartilage.

[16]  A. Nather,et al.  Mechanical properties of articular cartilage covered by the meniscus. , 2006, Osteoarthritis and cartilage.

[17]  J. Ahn,et al.  Arthroscopic all inside repair of the lateral meniscus root tear. , 2009, The Knee.

[18]  M. Hull,et al.  Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[19]  J. Buckwalter,et al.  The presence of a cartilage-like proteoglycan in the adult human meniscus. , 1981, The Biochemical journal.

[20]  R. Staron,et al.  MR imaging of displaced bucket-handle tear of the medial meniscus. , 1991, AJR. American journal of roentgenology.

[21]  Xiaodong Li,et al.  Microindentation test for assessing the mechanical properties of cartilaginous tissues. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[22]  P. Walker,et al.  The role of the menisci in force transmission across the knee. , 1975, Clinical orthopaedics and related research.

[23]  M. Göken,et al.  Mechanical properties of hyaline and repair cartilage studied by nanoindentation. , 2007, Acta biomaterialia.

[24]  H. Muir,et al.  The glycosaminoglycans of canine menisci. , 1981, The Biochemical journal.

[25]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[26]  L. Pruitt,et al.  A nanoindentation technique for functional evaluation of cartilage repair tissue , 2004 .

[27]  L. Pruitt,et al.  Nanoindentation differentiates tissue-scale functional properties of native articular cartilage. , 2006, Journal of biomedical materials research. Part A.

[28]  L. Rosenberg Chemical basis for the histological use of safranin O in the study of articular cartilage. , 1971, The Journal of bone and joint surgery. American volume.

[29]  Martin Englund,et al.  Prevalence of Tibiofemoral Osteoarthritis 15 Years after Nonoperative Treatment of Anterior Cruciate Ligament Injury , 2008, The American journal of sports medicine.

[30]  C. McDevitt,et al.  The ultrastructure and biochemistry of meniscal cartilage. , 1990, Clinical orthopaedics and related research.

[31]  S. Woo,et al.  Interspecies variation of compressive biomechanical properties of the meniscus. , 1995, Journal of biomedical materials research.

[32]  Paul B. Lewis,et al.  Multiple freeze‐thaw cycled meniscal allograft tissue: A biomechanical, biochemical, and histologic analysis , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[33]  H. Muir,et al.  The structure and function of cartilage proteoglycans. , 1988, Physiological reviews.

[34]  B. Beynnon,et al.  Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. , 1998, The Journal of orthopaedic and sports physical therapy.

[35]  A Hosseini,et al.  In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. , 2010, Osteoarthritis and cartilage.

[36]  Seungbum Koo,et al.  A Framework for the in Vivo Pathomechanics of Osteoarthritis at the Knee , 2004, Annals of Biomedical Engineering.

[37]  Christine Ortiz,et al.  Time-dependent nanomechanics of cartilage. , 2011, Biophysical journal.

[38]  I. Kiviranta,et al.  Demonstration of chondroitin sulphate and glycoproteins in articular cartilage matrix using periodic acid-Schiff (PAS) method , 2004, Histochemistry.

[39]  P. Roughley,et al.  Extraction and characterization of proteoglycan from human meniscus. , 1980, The Biochemical journal.

[40]  V. Mow,et al.  Proteoglycans and Mechanical Behavior of Condylar Cartilage , 2009, Journal of dental research.

[41]  Lisa A. Pruitt,et al.  Nanoindentation of biological materials , 2006 .

[42]  Rupal V Patel,et al.  Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle. , 2001, Journal of structural biology.

[43]  R. Aspden,et al.  Collagen orientations in the meniscus of the knee joint. , 1985, Journal of anatomy.

[44]  C. Helms,et al.  The absent bow tie sign in bucket-handle tears of the menisci in the knee. , 1998, AJR. American journal of roentgenology.

[45]  T. H. Haut Donahue,et al.  Nanoindentation of human meniscal surfaces. , 2012, Journal of biomechanics.

[46]  J. Herwig,et al.  Chemical changes of human knee joint menisci in various stages of degeneration. , 1984, Annals of the rheumatic diseases.

[47]  R. Cook,et al.  A practical guide for analysis of nanoindentation data. , 2009, Journal of the mechanical behavior of biomedical materials.

[48]  Van C. Mow,et al.  Structure and function of articular cartilage and meniscus , 2005 .

[49]  C. McDevitt,et al.  Biochemistry of articular cartilage. Nature of proteoglycans and collagen of articular cartilage and their role in ageing and in osteoarthrosis. , 1973, Annals of the rheumatic diseases.

[50]  K. Messner,et al.  The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment , 1998, Journal of anatomy.

[51]  Wolf Petersen,et al.  Collagenous fibril texture of the human knee joint menisci , 1998, Anatomy and Embryology.

[52]  Ueli Aebi,et al.  Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. , 2004, Biophysical journal.

[53]  C. M. Agrawal,et al.  Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus , 2004, Annals of Biomedical Engineering.

[54]  G. Tung,et al.  Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. , 2006, Radiology.

[55]  Seedhom Bb Loadbearing function of the menisci. , 1976 .

[56]  A. M. Ahmed,et al.  Tensile stress-strain characteristics of the human meniscal material. , 1995, Journal of biomechanics.