Change-Detection Map Learning Using Matching Pursuit

Learning can be of great use when dealing with problems in various fields. Inspired by locally linear embedding from manifold, we propose a novel automatic change-detection method through an offline learning approach. The proposed method comprises three steps. First, two coupled dictionaries of the difference image (DI) patches and change-detection map patches are generated from known image pairs. Second, we approximately represent each patch of the input DI with respect to the DI dictionary by using the matching the pursuit algorithm. Third, the coefficients of this representation are applied with the change-detection map dictionary to generate the output change-detection map. This way, we exploit the relationship between the DI patches and the corresponding change-detection map patches based on two coupled dictionaries. In addition, the relationship guides us to construct the change-detection map for any given input DI. Experimental results on real synthetic aperture radar databases show that the proposed method is superior to its counterparts. Our method can obtain promising results, even though the dictionaries are prepared by simple random sampling from fixed training images.

[1]  Minh N. Do,et al.  Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models , 2002, IEEE Trans. Multim..

[2]  M. Wilscy,et al.  Example based super-resolution using fuzzy clustering and sparse neighbor embedding , 2013, 2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS).

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[5]  Michael Elad,et al.  K-SVD : DESIGN OF DICTIONARIES FOR SPARSE REPRESENTATION , 2005 .

[6]  M. Do,et al.  Directional multiscale modeling of images using the contourlet transform , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[7]  Justin K. Romberg,et al.  Multiscale wedgelet image analysis: fast decompositions and modeling , 2002, Proceedings. International Conference on Image Processing.

[8]  Jong-Sen Lee,et al.  Speckle Suppression and Analysis for Synthetic Aperture Radar Images , 1985, Optics & Photonics.

[9]  Lorenzo Bruzzone,et al.  Automatic analysis of the difference image for unsupervised change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[10]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[11]  Salah Bourennane,et al.  Unsupervised change detection on SAR images using fuzzy hidden Markov chains , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[13]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[14]  Turgay Çelik,et al.  Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and $k$-Means Clustering , 2009, IEEE Geoscience and Remote Sensing Letters.

[15]  Zeki Yetgin,et al.  Unsupervised Change Detection of Satellite Images Using Local Gradual Descent , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Mei Li,et al.  Application of an improved Otsu algorithm in image segmentation: Application of an improved Otsu algorithm in image segmentation , 2010 .

[17]  Xiaolin Tian,et al.  A clustering algorithm with optimized multiscale spatial texture information: application to SAR image segmentation , 2013 .

[18]  Luciano Alparone,et al.  Nonparametric Change Detection in Multitemporal SAR Images Based on Mean-Shift Clustering , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Ashish Ghosh,et al.  Semi-supervised change detection using modified self-organizing feature map neural network , 2014, Appl. Soft Comput..

[20]  D. R. Fatland,et al.  Change detection on Alaska's North Slope using repeat-pass ERS-1 SAR images , 1993, IEEE Trans. Geosci. Remote. Sens..

[21]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[22]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[23]  Gabriele Moser,et al.  Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery , 2006, IEEE Trans. Geosci. Remote. Sens..

[24]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[25]  Ashish Ghosh,et al.  Fuzzy clustering algorithms for unsupervised change detection in remote sensing images , 2011, Inf. Sci..

[26]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[27]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[29]  Francesca Bovolo,et al.  A detail-preserving scale-driven approach to change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Nor Ashidi Mat Isa,et al.  Adaptive fuzzy-K-means clustering algorithm for image segmentation , 2010, IEEE Transactions on Consumer Electronics.

[31]  Fang Liu,et al.  A compressed sensing approach for efficient ensemble learning , 2014, Pattern Recognit..

[32]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[33]  Lorenzo Bruzzone,et al.  Automatic identification of the number and values of decision thresholds in the log-ratio image for change detection in SAR images , 2006, IEEE Geoscience and Remote Sensing Letters.

[34]  Stéphane Mallat,et al.  A review of Bandlet methods for geometrical image representation , 2007, Numerical Algorithms.

[35]  Lorenzo Bruzzone,et al.  An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Kai-Kuang Ma,et al.  Unsupervised Change Detection for Satellite Images Using Dual-Tree Complex Wavelet Transform , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Asari,et al.  Fuzzy Clustering with a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images , 2015 .

[39]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[40]  Kai-Kuang Ma,et al.  Multitemporal Image Change Detection Using Undecimated Discrete Wavelet Transform and Active Contours , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Oliver Rockinger,et al.  Image sequence fusion using a shift-invariant wavelet transform , 1997, Proceedings of International Conference on Image Processing.

[42]  Turgay Çelik,et al.  Multiscale Change Detection in Multitemporal Satellite Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[43]  Pierre Vandergheynst,et al.  Analysis of multimodal signals using redundant representations , 2005, IEEE International Conference on Image Processing 2005.

[44]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[45]  Francesca Bovolo,et al.  Supervised change detection in VHR images using contextual information and support vector machines , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[46]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[47]  Maoguo Gong,et al.  Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering , 2012, IEEE Transactions on Image Processing.

[48]  Dennis M. Healy,et al.  Wavelet transform domain filters: a spatially selective noise filtration technique , 1994, IEEE Trans. Image Process..

[49]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[50]  William M. Goldman,et al.  GEOMETRIC STRUCTURES AND VARIETIES OF REPRESENTATIONS , 1988 .

[51]  S. Khorram,et al.  Remotely Sensed Change Detection Based on Artificial Neural Networks , 1999 .

[52]  Xuelong Li,et al.  Image Super-Resolution With Sparse Neighbor Embedding , 2012, IEEE Transactions on Image Processing.

[53]  Stelios Krinidis,et al.  A Robust Fuzzy Local Information C-Means Clustering Algorithm , 2010, IEEE Transactions on Image Processing.

[54]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Xin Yao,et al.  An Evolutionary Multiobjective Approach to Sparse Reconstruction , 2014, IEEE Transactions on Evolutionary Computation.

[57]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[58]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.