SMAA-classification: a new method for nominal classification

We have developed a multicriteria decision aiding method for nominal classification for situations where prefer-ence information is imprecise, uncertain or absent. Such situations may appear, for instance, when the decisionmaker is not sure about his or her preferences or when there are multiple decision makers who have difficulties inagreeing about their common preference. The new SMAA-Classification method extends Stochastic Multicrite-ria Acceptability Analysis (SMAA) methodology for classification problems. The method provides the decisionmaker with descriptive information in the form of acceptability index for each alternative to be classified intoeach predefined class. We test the new method with several applications.

[1]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[2]  R. Soland,et al.  Multiple‐attribute decision making with partial information: The comparative hypervolume criterion , 1978 .

[3]  Piet Rietveld,et al.  Multiple objective decision methods and regional planning , 1980 .

[4]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[5]  C. B. E. Costa A multicriteria decision aid methodology to deal with conflicting situations on the weights , 1986 .

[6]  V. Srinivasan,et al.  Credit Granting: A Comparative Analysis of Classification Procedures , 1987 .

[7]  B. Roy The outranking approach and the foundations of electre methods , 1991 .

[8]  H. A. Eiselt,et al.  The use of domains in multicriteria decision making , 1992 .

[9]  William Emmanuel S. Yu,et al.  Aide multicritere a la decision dans le cadre de la problematique du tri , 1992 .

[10]  Oleg I. Larichev,et al.  Verbal Decision Analysis for Unstructured Problems , 1997 .

[11]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[12]  Patrice Perny,et al.  Multicriteria filtering methods based onconcordance and non-discordance principles , 1998, Ann. Oper. Res..

[13]  Kaisa Miettinen,et al.  Determining the implementation order of a general plan by using a multicriteria method , 1998 .

[14]  Risto Lahdelma,et al.  A multiple criteria decision model for analyzing and choosing among different development patterns for the Helsinki cargo harbor , 1999 .

[15]  Vincent Mousseau,et al.  A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support , 2000, Comput. Oper. Res..

[16]  Nabil Belacel,et al.  Multicriteria assignment method PROAFTN: Methodology and medical application , 2000, Eur. J. Oper. Res..

[17]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[18]  José Rui Figueira,et al.  Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results , 2001, Eur. J. Oper. Res..

[19]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[20]  Risto Lahdelma,et al.  Pseudo-criteria versus linear utility function in stochastic multi-criteria acceptability analysis , 2002, Eur. J. Oper. Res..

[21]  Luis C. Dias,et al.  An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI , 2002, Eur. J. Oper. Res..

[22]  Oleg I. Larichev,et al.  Decision support system for classification of a finite set of multicriteria alternatives , 2002, Decis. Support Syst..

[23]  Jean-Marc Martel,et al.  A multicriteria assignment procedure for a nominal sorting problematic , 2002, Eur. J. Oper. Res..

[24]  Constantin Zopounidis,et al.  Multicriteria Decision Aid Classification Methods , 2002 .

[25]  Jyrki Kangas,et al.  Multicriteria approval and SMAA-O in natural resources decision analysis with both ordinal and cardinal criteria , 2003 .

[26]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[27]  Jyrki Kangas,et al.  Applying Stochastic Multicriteria Acceptability Analysis to Forest Ecosystem Management with Both Cardinal and Ordinal Criteria , 2003 .

[28]  Kaisa Miettinen,et al.  Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA) , 2003, Eur. J. Oper. Res..

[29]  Constantin Zopounidis,et al.  A multicriteria classification approach based on pairwise comparisons , 2004, Eur. J. Oper. Res..

[30]  Christophe Labreuche,et al.  Fuzzy Measures and Integrals in MCDA , 2004 .

[31]  Patrick Meyer,et al.  Sorting multi-attribute alternatives: The TOMASO method , 2005, Comput. Oper. Res..

[32]  Rua Antero de Quental,et al.  SMAA-TRI: A Parameter Stability Analysis Method for ELECTRE TRI , 2005 .

[33]  Kaisa Miettinen,et al.  Reference point approach for multiple decision makers , 2005, Eur. J. Oper. Res..

[34]  Tommi Tervonen,et al.  Implementing stochastic multicriteria acceptability analysis , 2007, Eur. J. Oper. Res..

[35]  D. Wu,et al.  Multiple Criteria Analysis , 2007 .

[36]  Salvatore Greco,et al.  Multi-criteria classification - A new scheme for application of dominance-based decision rules , 2007, Eur. J. Oper. Res..

[37]  Kaisa Miettinen,et al.  Verbal ordinal classification with multicriteria decision aiding , 2008, Eur. J. Oper. Res..

[38]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.