CP-nets: From Theory to Practice

Conditional preference networks CP-nets have been proposed for modeling and reasoning about combinatorial decision domains. However, the study of CP-nets has not advanced sufficiently for their widespread use in complex, real-world applications. My research involves addressing these issues to make CP-nets more useful in such settings.

[1]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[2]  Timothy D. Wilson,et al.  Thinking too much: introspection can reduce the quality of preferences and decisions. , 1991, Journal of personality and social psychology.

[3]  Nicholas Mattei,et al.  A behavioral perspective on social choice , 2012, Annals of Mathematics and Artificial Intelligence.

[4]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[5]  Loran F. Nordgren,et al.  The Devil Is in the Deliberation: Thinking Too Much Reduces Preference Consistency , 2009 .

[6]  Sanjoy Dasgupta,et al.  Learning Polytrees , 1999, UAI.

[7]  Loizos Michael,et al.  Ceteris Paribus Preference Elicitation with Predictive Guarantees , 2009, IJCAI.

[8]  Carmel Domshlak,et al.  On Recursively Directed Hypercubes , 2001, Electron. J. Comb..

[9]  Bruno Zanuttini,et al.  Learning Probabilistic CP-nets from Observations of Optimal Items , 2014, STAIRS.

[10]  Bertran Steinsky,et al.  Efficient coding of labeled directed acyclic graphs , 2003, Soft Comput..

[11]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[12]  Vidyadhar G. Kulkarni,et al.  Generating Random Combinatorial Objects , 1990, J. Algorithms.

[13]  Timothy D. Wilson,et al.  Telling more than we can know: Verbal reports on mental processes. , 1977 .

[14]  Fahiem Bacchus,et al.  Graphical models for preference and utility , 1995, UAI.

[15]  Spike Cramphorn Blink: The Power of Thinking without Thinking / Strangers to Ourselves: Discovering the Adaptive Unconscious , 2006, Journal of Advertising Research.

[16]  Toby Walsh,et al.  Incompleteness and Incomparability in Preference Aggregation , 2007, IJCAI.

[17]  Ronen I. Brafman,et al.  Introducing Variable Importance Tradeoffs into CP-Nets , 2002, UAI.

[18]  Toby Walsh,et al.  mCP Nets: Representing and Reasoning with Preferences of Multiple Agents , 2004, AAAI.

[19]  Jon Doyle,et al.  Interest-Matching Comparisons using CP-nets , 2007, AAAI.

[20]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[21]  Sze-Tsen Hu Mathematical theory of switching circuits and automata , 1968 .

[22]  Yi Xiong,et al.  Learning Conditional Preference Networks from Inconsistent Examples , 2014, IEEE Transactions on Knowledge and Data Engineering.

[23]  Peter C. Fishburn,et al.  Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..

[24]  Thomas E. Allen I Prefer to Eat , 2015, AAAI Workshop: Artificial Intelligence Applied to Assistive Technologies and Smart Environments.

[25]  Gary Gordon,et al.  A greedoid polynomial which distinguishes rooted arborescences , 1989 .

[26]  Vasant Honavar,et al.  CRISNER: A Practically Efficient Reasoner for Qualitative Preferences , 2015, ArXiv.

[27]  Nicholas Mattei,et al.  An Empirical Study of Voting Rules and Manipulation with Large Datasets , 2012 .

[28]  Vincent Conitzer,et al.  Hypercubewise Preference Aggregation in Multi-Issue Domains , 2011, IJCAI.

[29]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[30]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[31]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[32]  Kenneth H. Rosen,et al.  Discrete Mathematics and its applications , 2000 .

[33]  Toby Walsh,et al.  A Short Introduction to Preferences: Between AI and Social Choice , 2011 .

[34]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[35]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[36]  Lirong Xia,et al.  Sequential composition of voting rules in multi-issue domains , 2009, Math. Soc. Sci..

[37]  Miroslaw Truszczynski,et al.  Reasoning with Preference Trees over Combinatorial Domains , 2015, ADT.

[38]  Bruno Zanuttini,et al.  Probabilistic Conditional Preference Networks , 2013, UAI.

[39]  Peter Vojtás,et al.  Learning User Preferences for 2CP-Regression for a Recommender System , 2010, SOFSEM.

[40]  Peter C. Fishburn,et al.  Preference Structures and Their Numerical Representations , 1999, Theor. Comput. Sci..

[41]  Ronen I. Brafman,et al.  The Next Best Solution , 2011, AAAI.

[42]  Luke O'Connor,et al.  Nondegenerate Functions and Permutations , 1997, Discret. Appl. Math..

[43]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[44]  Nicholas Mattei,et al.  Generating CP-Nets Uniformly at Random , 2016, AAAI.

[45]  Carmel Domshlak,et al.  Hard and soft constraints for reasoning about qualitative conditional preferences , 2006, J. Heuristics.

[46]  Bruno Zanuttini,et al.  Learning conditional preference networks , 2010, Artif. Intell..

[47]  A. A. J. Marley,et al.  Behavioral Social Choice - Probabilistic Models, Statistical Inference, and Applications , 2006 .

[48]  Francesca Rossi,et al.  Beyond Theory and Data in Preference Modeling: Bringing Humans into the Loop , 2015, ADT.

[49]  Eyke Hüllermeier,et al.  Preference Learning: An Introduction , 2010, Preference Learning.

[50]  Peter Vojtás,et al.  How to Learn Fuzzy User Preferences with Variable Objectives , 2009, IFSA/EUSFLAT Conf..

[51]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[52]  José L. Balcázar,et al.  The complexity of algorithmic problems on succinct instances , 1992 .

[53]  Ryszard Kowalczyk,et al.  Efficient heuristic approach to dominance testing in CP-nets , 2011, AAMAS.

[54]  Yann Chevaleyre,et al.  Learning Ordinal Preferences on Multiattribute Domains: The Case of CP-nets , 2010, Preference Learning.

[55]  Vasant Honavar,et al.  Representing and Reasoning with Qualitative Preferences: Tools and Applications , 2016, Representing and Reasoning with Qualitative Preferences.

[56]  Bruno Zanuttini,et al.  Learning Conditional Preference Networks with Queries , 2009, IJCAI.

[57]  Patrice Perny,et al.  GAI Networks for Utility Elicitation , 2004, KR.

[58]  Shotaro Akaho,et al.  Nantonac collaborative filtering: a model-based approach , 2010, RecSys '10.

[59]  Toby Walsh,et al.  Where are the hard manipulation problems? , 2010, J. Artif. Intell. Res..

[60]  Jérôme Lang,et al.  Learning preference relations over combinatorial domains , 2008 .

[61]  Joshua Guerin Graphic Models for Decision Support in Academic Advising , 2012 .

[62]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[63]  Judea Pearl,et al.  The recovery of causal poly-trees from statistical data , 1987, Int. J. Approx. Reason..

[64]  Miroslaw Truszczynski,et al.  The computational complexity of dominance and consistency in CP-nets , 2005, IJCAI.

[65]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[66]  Donald L. Kreher,et al.  Combinatorial algorithms: generation, enumeration, and search , 1998, SIGA.

[67]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[68]  Toby Walsh,et al.  A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice , 2011, A Short Introduction to Preferences.

[69]  Ronen I. Brafman,et al.  Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.

[70]  Konstantinos Panagiotou,et al.  Efficient Sampling Methods for Discrete Distributions , 2012, ICALP.

[71]  Thomas E. Allen CP-nets with indifference , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[72]  Nicholas Mattei,et al.  Counting, Ranking, and Randomly Generating CP-Nets , 2014, MPREF@AAAI.

[73]  Francesca Rossi,et al.  Bribery in voting with CP-nets , 2013, Annals of Mathematics and Artificial Intelligence.

[74]  Ronen I. Brafman,et al.  Preference‐Based Constrained Optimization with CP‐Nets , 2004, Comput. Intell..

[75]  Michael A. Harrison,et al.  Introduction to switching and automata theory , 1965 .

[76]  Judy Goldsmith,et al.  Learning CP-Net Preferences Online from User Queries , 2013, AAAI.

[77]  Stefano Bistarelli,et al.  Using CP-nets as a guide for countermeasure selection , 2007, SAC '07.

[78]  Thomas Lukasiewicz,et al.  On the Complexity of mCP-nets , 2016, AAAI.

[79]  G. Gigerenzer Gut Feelings: The Intelligence of the Unconscious , 2007 .

[80]  Vasant Honavar,et al.  Dominance Testing via Model Checking , 2010, AAAI.

[81]  Judy Goldsmith,et al.  Preference Handling for Artificial Intelligence , 2008, AI Mag..

[82]  Jérôme Lang,et al.  The Complexity of Learning Separable ceteris paribus Preferences , 2009, IJCAI.

[83]  S. Berg Paradox of voting under an urn model: The effect of homogeneity , 1985 .

[84]  Reinhard Pichler,et al.  A Parameterized Complexity Analysis of Generalized CP-Nets , 2014, AAAI.

[85]  Francesca Rossi,et al.  Updates and Uncertainty in CP-Nets , 2013, Australasian Conference on Artificial Intelligence.

[86]  D. H. Lehmer Teaching combinatorial tricks to a computer , 1960 .

[87]  Ronen I. Brafman,et al.  CP-nets: Reasoning and Consistency Testing , 2002, KR.

[88]  Jussi Rintanen,et al.  Computing Upper Bounds on Lengths of Transition Sequences , 2013, IJCAI.

[89]  Yi Xiong,et al.  Learning conditional preference network from noisy samples using hypothesis testing , 2013, Knowl. Based Syst..

[90]  Yann Chevaleyre,et al.  Preference Handling in Combinatorial Domains: From AI to Social Choice , 2008, AI Mag..

[91]  Cristina Cornelio,et al.  Dynamic and Probabilistic CP-nets , 2012 .

[92]  Koen V. Hindriks,et al.  Heuristic-Based Approaches for CP-Nets in Negotiation , 2013, Complex Automated Negotiations.

[93]  László Gulyás,et al.  An Estimation of the Shortest and Largest Average Path Length in Graphs of Given Density , 2011, ArXiv.