Partial regularity of minimizers of asymptotically convex functionals with Morrey coefficients

Abstract We consider minimizers of the functional ∫ Ω f ( x , u , D u ) d x , where f is asymptotically related the function ( x , u , ξ ) ↦ a ( x , u ) G ( ξ ) , with G a function with p-Uhlenbeck structure and a ∈ C 0 ( Ω × R N ) . The main contribution of this article is to refine the growth estimate imposed on f. In particular, we assume that | f ( x , u , ξ ) | ≤ μ 1 ( x ) + μ 2 ( x ) | u | s + M ( 1 + | ξ | 2 ) p 2 , where μ 2 ∈ L γ , β ( Ω ) for some numbers β and γ. By assuming only that the coefficient μ 2 belongs to a Morrey space, relative to existing results in the literature we are able to better match our results to a given problem.

[1]  M. Giaquinta,et al.  Regularity results for some classes of higher order non linear elliptic systems. , 1979 .

[2]  M. Giaquinta,et al.  Partial regularity of minimizers of quasiconvex integrals , 1986 .

[3]  Karen K. Uhlenbeck Regularity for a class of non-linear elliptic systems , 1977 .

[4]  M. Foss Global regularity for almost minimizers of nonconvex variational problems , 2008 .

[5]  A. Verde,et al.  Global Morrey regularity results for asymptotically convex variational problems , 2008 .

[6]  M. Giaquinta,et al.  Remarks on the regularity of the minimizers of certain degenerate functionals , 1986 .

[7]  Michel Chipot,et al.  Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  B. Stroffolini,et al.  Lipschitz regularity for some asymptotically convex problems , 2011 .

[9]  Enrico Giusti,et al.  On the regularity of the minima of variational integrals , 1982 .

[10]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[11]  Partial Hölder continuity of minimizers of functionals satisfying a VMO condition , 2015 .

[12]  E. Giusti Direct methods in the calculus of variations , 2003 .

[13]  M. Giaquinta,et al.  Almost-everywhere regularity results for solutions of non linear elliptic systems , 1979 .

[14]  C. Goodrich A general low-order partial regularity theory for asymptotically convex functionals with asymptotic dependence on the minimizer , 2018, Calculus of Variations and Partial Differential Equations.

[15]  Giuseppe Mingione,et al.  Regularity of minima: An invitation to the dark side of the calculus of variations , 2006 .

[16]  C. Goodrich,et al.  On partial Hölder continuity and a Caccioppoli inequality for minimizers of asymptotically convex functionals between Riemannian manifolds , 2016 .

[17]  J. Raymond Lipschitz regularity of solutions of some asymptotically convex problems , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Karen Uhlenbeck,et al.  Boundary regularity and the Dirichlet problem for harmonic maps , 1983 .

[19]  Christoph Scheven,et al.  Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure , 2009 .

[20]  A. Verde,et al.  Global Lipschitz regularity for almost minimizers of asymptotically convex variational problems , 2009 .

[21]  M. Giaquinta,et al.  Differentiability of minima of non-differentiable functionals , 1983 .

[22]  Giuseppe Mingione,et al.  Singularities of minima: a walk on the wild side of the Calculus of Variations , 2008, J. Glob. Optim..

[23]  C. Goodrich Partial Lipschitz regularity of minimizers of asymptotically convex functionals with general growth conditions , 2017 .