Aero-Servo-Elastic Design of Wind Turbines: Numerical and Wind Tunnel Modeling Contribution

The main purpose of this contribution is to provide a basic understanding of the fundamental interaction mechanism between the wind flow and the wind turbine, responsible for the power generation, as well as for the aerodynamic and inertial loading of the machine. A specific focus will be given at this proposal to the role of the control laws by which the turbine is operated, in determining both the performance as well as the structural loading of the machinery.

[1]  C. Riboldi,et al.  Advanced control laws for variable-speed wind turbines and supporting enabling technologies , 2012 .

[2]  Jason Jonkman,et al.  OC3—Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes , 2007 .

[3]  Olivier A. Bauchau,et al.  Formulation of Modal-Based Elements in Nonlinear, Flexible Multibody Dynamics , 2003 .

[4]  Peter Betsch,et al.  The discrete null space method for the energy consistent integration of constrained mechanical systems: Part I: Holonomic constraints , 2005 .

[5]  N. Orlandea,et al.  A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 2 , 1977 .

[6]  Eastman N. Jacobs,et al.  Airfoil section characteristics as affected by variations of the Reynolds number , 1939 .

[7]  Marco Lovera,et al.  Simulation and identification of helicopter rotor dynamics using a general-purpose multibody code , 1999 .

[8]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[9]  Vaughn Nelson Wind Energy: Renewable Energy and the Environment , 2009 .

[10]  Jens Nørkær Sørensen,et al.  Blade optimization for wind turbines , 2009 .

[11]  Olivier A. Bauchau,et al.  Modeling rotorcraft dynamics with finite element multibody procedures , 2001 .

[12]  Martin Otto Laver Hansen,et al.  Aerodynamics of Wind Turbines , 2001 .

[13]  M. A. Chace,et al.  A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 1 , 1977 .

[14]  James F. Manwell,et al.  Book Review: Wind Energy Explained: Theory, Design and Application , 2006 .

[15]  M. Borri,et al.  On Representations and Parameterizations of Motion , 2000 .

[16]  Olivier A. Bauchau,et al.  Robust integration schemes for flexible multibody systems , 2003 .

[17]  Daniel Dopico,et al.  On the optimal scaling of index three DAEs in multibody dynamics , 2008 .

[18]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[19]  Helge Aagaard Madsen,et al.  Optimization method for wind turbine rotors , 1999 .

[20]  Peter Betsch,et al.  The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics , 2006 .

[21]  K. Y. Maalawi,et al.  A practical approach for selecting optimum wind rotors , 2003 .

[22]  David A. Peters,et al.  Finite state induced flow models. II - Three-dimensional rotor disk , 1995 .

[23]  M. Borri,et al.  Anisotropic beam theory and applications , 1983 .

[24]  Jason Jonkman,et al.  Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines , 2007 .

[25]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[26]  Carlo L. Bottasso,et al.  Power curve tracking in the presence of a tip speed constraint , 2012 .

[27]  David Greiner,et al.  Wind blade chord and twist angle optimization using genetic algorithms , 2006 .

[28]  O. Bauchau,et al.  Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems , 2008 .

[29]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[30]  M. Borri,et al.  The Embedded Projection Method : A general index reduction procedure for constrained system dynamics , 2006 .

[31]  Per Lötstedt,et al.  Numerical solution of nonlinear differential equations with algebraic contraints II: practical implications , 1986 .

[32]  Mariusz Pawlak,et al.  Optimisation of wind turbine blades , 2005 .

[33]  Olivier A. Bauchau,et al.  Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations , 2009 .

[34]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[35]  O. Bauchau,et al.  Review of Classical Approaches for Constraint Enforcement in Multibody Systems , 2008 .

[36]  Patrizio Colaneri,et al.  Invariant representations of discrete-time periodic systems , 2000, Autom..

[37]  Peter Eberhard,et al.  A two-step approach for model reduction in flexible multibody dynamics , 2007 .

[38]  Peter Eberhard,et al.  Error-Controlled Model Reduction in Flexible Multibody Dynamics , 2010 .

[39]  J. Golinval,et al.  The global modal parameterization for non‐linear model‐order reduction in flexible multibody dynamics , 2007 .

[40]  Olivier A. Bauchau,et al.  Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations , 2007, SIAM J. Sci. Comput..