Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.

[1]  M. Jablonski,et al.  Ultrafast fiber pulsed lasers incorporating carbon nanotubes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Anton Autere,et al.  Nonlinear Optics with 2D Layered Materials , 2018, Advanced materials.

[3]  S. Korotky,et al.  A multiwavelength source having precise channel spacing for WDM systems , 1998, IEEE Photonics Technology Letters.

[4]  R. Going,et al.  500 fs wideband tunable fiber laser mode-locked by nanotubes , 2012 .

[5]  W. Lu,et al.  Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers. , 2017, Optics express.

[6]  Xia Yu,et al.  Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser. , 2014, Optics express.

[7]  Qi Jie Wang,et al.  High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction , 2015, Scientific Reports.

[8]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[9]  B. Nalini,et al.  Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy , 2006 .

[10]  Zhipei Sun,et al.  74-fs nanotube-mode-locked fiber laser , 2012 .

[11]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[12]  D. Guo,et al.  Self-mixing interferometer based on sinusoidal phase modulating technique. , 2005, Optics express.

[13]  Shuangchen Ruan,et al.  High-energy and efficient Raman soliton generation tunable from 1.98 to 2.29  µm in an all-silica-fiber thulium laser system. , 2017, Optics letters.

[14]  Jaroslaw Sotor,et al.  Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. , 2012, Optics express.

[15]  Yudong Cui,et al.  Flexible pulse-controlled fiber laser , 2015, Scientific Reports.

[16]  Chunhui Zhu,et al.  Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. , 2016, Nanoscale.

[17]  T. Sajavaara,et al.  Broadband semiconductor saturable absorber mirrors in the 1.55-/spl mu/m wavelength range for pulse generation in fiber lasers , 2002 .

[18]  Günter Steinmeyer,et al.  Boosting the Non Linear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode‐Locking of Bulk Lasers , 2010 .

[19]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[20]  Xiaohui Li,et al.  Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique , 2010 .

[21]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[22]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[23]  I H White,et al.  Wideband-tuneable, nanotube mode-locked, fibre laser. , 2008, Nature nanotechnology.

[24]  Zhipei Sun,et al.  Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes , 2013, Scientific Reports.

[25]  Amos Martinez,et al.  Photon‐Pair Generation with a 100 nm Thick Carbon Nanotube Film , 2017, Advanced materials.

[26]  R. Sundaram,et al.  Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. , 2013, Optics express.

[27]  Dafu Cui,et al.  Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror. , 2005, Optics express.

[28]  M. López-Amo,et al.  Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer , 2013 .

[29]  Irl N. Duling,et al.  Experimental study of sideband generation in femtosecond fiber lasers , 1994 .

[30]  I. White,et al.  Generation of ultra‐fast laser pulses using nanotube mode‐lockers , 2006 .

[31]  R. Norwood,et al.  Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. , 2017, The journal of physical chemistry letters.

[32]  G. Qin,et al.  Widely tunable passively mode-locked fiber laser with carbon nanotube films , 2009, 2009 14th OptoElectronics and Communications Conference.

[33]  Mode locking of a broad-area semiconductor laser with a multiple-quantum-well saturable absorber. , 1993, Optics letters.

[34]  F. Torrisi,et al.  Sub 200 fs pulse generation from a graphene mode-locked fiber laser , 2010, 1010.1329.

[35]  R. Pashaie,et al.  Nonlinear optical signal processing on multiwavelength sensitive materials. , 2013, Optics letters.

[36]  Harri Lipsanen,et al.  Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation , 2015, Scientific Reports.

[37]  Zhipei Sun,et al.  A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser , 2010 .

[38]  S. Louie,et al.  An atlas of carbon nanotube optical transitions. , 2012, Nature nanotechnology.

[39]  Zhipei Sun,et al.  Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics , 2014 .

[40]  Zhongfan Liu,et al.  Monitoring Local Strain Vector in Atomic-Layered MoSe2 by Second-Harmonic Generation. , 2017, Nano letters.

[41]  Zhipei Sun,et al.  Nanotube and graphene saturable absorbers for fibre lasers , 2013, Nature Photonics.

[42]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[43]  Kazuyoshi Itoh,et al.  Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses. , 2012, Optics letters.

[44]  Konstantin Golant,et al.  Bismuth fiber integrated laser mode-locked by carbon nanotubes , 2010 .

[45]  Hongwei Zhu,et al.  Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[47]  Wenjun Liu,et al.  Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. , 2017, Optics letters.

[48]  Robert A Norwood,et al.  Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy , 2017, Nature Communications.

[49]  J. R. Taylor,et al.  Nanosecond-pulse fiber lasers mode-locked with nanotubes , 2009 .

[50]  G. Privitera,et al.  Solution‐phase exfoliation of graphite for ultrafast photonics , 2010 .

[51]  Zhipei Sun,et al.  Large-area tungsten disulfide for ultrafast photonics. , 2017, Nanoscale.

[52]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[53]  A. Luo,et al.  Tunable and switchable dual-wavelength passively mode-locked fiber ring laser with high-energy pulses at a sub-100 kHz repetition rate , 2011 .

[54]  J R Taylor,et al.  Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS₂). , 2014, Optics express.

[55]  S. Yamashita,et al.  A Tutorial on Nonlinear Photonic Applications of Carbon Nanotube and Graphene , 2012, Journal of Lightwave Technology.

[56]  Samuli Kivistö,et al.  Carbon nanotube films for ultrafast broadband technology. , 2009, Optics express.

[57]  Young-Geun Han,et al.  Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature. , 2005, Optics letters.

[58]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[59]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[60]  Zhipei Sun,et al.  Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency , 2017, Advanced materials.

[61]  Zhipei Sun,et al.  Black phosphorus polycarbonate polymer composite for pulsed fibre lasers , 2016 .

[62]  Zhipei Sun,et al.  Graphene actively Q-switched lasers , 2017 .

[63]  J R Taylor,et al.  Ultrafast Raman laser mode-locked by nanotubes. , 2011, Optics letters.

[64]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[65]  Robert R. Thomson,et al.  Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking , 2013 .

[66]  J R Taylor,et al.  Generation and direct measurement of giant chirp in a passively mode-locked laser. , 2009, Optics letters.

[67]  Zhipei Sun,et al.  Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics , 2017, Nature Communications.

[68]  H. Tam,et al.  120 nm Bandwidth noise-like pulse generation in an erbium-doped fiber laser , 2008 .

[69]  W. Milne,et al.  Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube -Polymer Composites , 2008 .

[70]  J. Taylor,et al.  Tm-doped fiber laser mode-locked by graphene-polymer composite. , 2012, Optics express.

[71]  Valery M. Mashinsky,et al.  Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation , 2011 .

[72]  R. Sundaram,et al.  2 μm solid-state laser mode-locked by single-layer graphene , 2012, 1210.7042.

[73]  B. H. Chapman,et al.  Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. , 2013, Optics express.

[74]  A. Ferrari,et al.  A compact, high power, ultrafast laser mode-locked by carbon nanotubes , 2009 .

[75]  D. Côté,et al.  Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system , 2011, Biomedical optics express.

[76]  Libai Huang,et al.  Ultrafast Ground-State Recovery of Single-Walled Carbon Nanotubes , 2004 .

[77]  Robert A Norwood,et al.  Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers , 2016, Nature Communications.

[78]  F. Hennrich,et al.  Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization , 2002 .

[79]  D. Mao,et al.  Flexible high-repetition-rate ultrafast fiber laser , 2013, Scientific Reports.

[80]  D. Bimberg,et al.  Mode-Locked Quantum-Dot Lasers , 2011, IEEE Winter Topicals 2011.