Foreground detection based on co-occurrence background model with hypothesis on degradation modification in dynamic scenes

Abstract This work presents a Hypothesis on Degradation Modification (HoD) based on Co-occurrence Pixel-Block Pairs (CPB, which is proposed in our previous work) to further resist background changes for foreground detection, such as illumination changes and background motion. HoD provides CPB with a model update strategy that can be used for a long time. While further improving the robustness of CPB, it also stabilizes the efficiency of CPB over time. A key contribution of this work is it offers a robust background subtraction for foreground detection in dynamic scenes. The observation is robust to illumination changes and background motion and demonstrates the ability of HoD. Experimental results obtained from the datasets under different challenges of PETS 2001, AIST-Indoor, SBMnet and CDW-2012 databases prove that our algorithm has a good effectiveness for foreground detection.

[1]  Nizar Bouguila,et al.  Background subtraction using finite mixtures of asymmetric Gaussian distributions and shadow detection , 2013, Machine Vision and Applications.

[2]  I. Haritaoglu,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .

[3]  Thierry Bouwmans,et al.  Traditional and recent approaches in background modeling for foreground detection: An overview , 2014, Comput. Sci. Rev..

[4]  Stefan Winkler,et al.  The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics , 2008, IEEE Transactions on Broadcasting.

[5]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[6]  Mohammed Ghanbari,et al.  Scope of validity of PSNR in image/video quality assessment , 2008 .

[7]  Dong Liang,et al.  Co-occurrence Background Model with Hypothesis on Degradation Modification for Robust Object Detection , 2018, VISIGRAPP.

[8]  Thierry Bouwmans,et al.  A Fuzzy Background Modeling Approach for Motion Detection in Dynamic Backgrounds , 2012, MMSP 2012.

[9]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[10]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[11]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[12]  Petra Gomez-Krämer,et al.  Detecting and tracking honeybees in 3D at the beehive entrance using stereo vision , 2013, EURASIP J. Image Video Process..

[13]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[14]  Thierry Chateau,et al.  A Benchmark Dataset for Outdoor Foreground/Background Extraction , 2012, ACCV Workshops.

[15]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[16]  Luca Iocchi,et al.  Parallel multi-modal background modeling , 2017, Pattern Recognit. Lett..

[17]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[18]  Lucia Maddalena,et al.  Extensive Benchmark and Survey of Modeling Methods for Scene Background Initialization , 2017, IEEE Transactions on Image Processing.

[19]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[20]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[21]  N. Lazarevic-McManus,et al.  Performance evaluation in visual surveillance using the F-measure , 2006, VSSN '06.

[22]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[23]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[24]  Lucia Maddalena,et al.  Scene background initialization: A taxonomy , 2017, Pattern Recognit. Lett..

[25]  Nuno Vasconcelos,et al.  Anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Thuong Le-Tien,et al.  NIC: A Robust Background Extraction Algorithm for Foreground Detection in Dynamic Scenes , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Luca Iocchi,et al.  Independent multimodal background subtraction , 2012, CompIMAGE.

[28]  Bastian Leibe,et al.  Superpixels: An evaluation of the state-of-the-art , 2016, Comput. Vis. Image Underst..

[29]  Marc Van Droogenbroeck,et al.  Deep background subtraction with scene-specific convolutional neural networks , 2016, 2016 International Conference on Systems, Signals and Image Processing (IWSSIP).

[30]  Max Mignotte,et al.  Statistical background subtraction using spatial cues , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  Lucia Maddalena,et al.  Towards Benchmarking Scene Background Initialization , 2015, ICIAP Workshops.

[32]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[33]  Dacheng Tao,et al.  Patch Alignment Manifold Matting , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[34]  Dong Liang,et al.  Co-occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes , 2015, Pattern Recognit..

[35]  Guillaume-Alexandre Bilodeau,et al.  Change Detection in Feature Space Using Local Binary Similarity Patterns , 2013, 2013 International Conference on Computer and Robot Vision.

[36]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[37]  Soon Ki Jung,et al.  Background–Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering , 2017, IEEE Transactions on Image Processing.

[38]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[39]  Zhongfei Zhang,et al.  Deep learning driven blockwise moving object detection with binary scene modeling , 2015, Neurocomputing.

[40]  Guillaume-Alexandre Bilodeau,et al.  SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity , 2015, IEEE Transactions on Image Processing.

[41]  Yongsheng Dong,et al.  Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps , 2018, IEEE Transactions on Cybernetics.

[42]  Antoine Vacavant,et al.  A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos , 2014, Comput. Vis. Image Underst..