Quasi-2d Fcc Lithium Crystals Inside Defective Bi-Layer Graphene: Insights from First-Principles Calculations

[1]  A. Krasheninnikov,et al.  Single- and Multilayers of Alkali Metal Atoms inside Graphene/MoS2 Heterostructures: A Systematic First-Principles Study , 2022, The Journal of Physical Chemistry C.

[2]  D. Çakır,et al.  Coal-Derived Graphene/MoS2 Heterostructure Electrodes for Li-Ion Batteries: Experiment and Simulation Study. , 2021, ACS applied materials & interfaces.

[3]  A. Krasheninnikov,et al.  Quasi-two-dimensional NaCl crystals encapsulated between graphene sheets and their decomposition under an electron beam. , 2021, Nanoscale.

[4]  A. Krasheninnikov,et al.  Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene , 2021, Advanced materials.

[5]  Jannik C. Meyer,et al.  Toward Exotic Layered Materials: 2D Cuprous Iodide , 2021, Advanced materials.

[6]  A. Krasheninnikov,et al.  Alkali metals inside bi-layer graphene and MoS2: Insights from first-principles calculations , 2020 .

[7]  Ramin Rojaee,et al.  Two Dimensional Materials to Address the Li-Based Battery Challenges. , 2020, ACS nano.

[8]  D. Golberg,et al.  Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials , 2019, Advanced materials.

[9]  Jun Cheng,et al.  First-principles study of alkali-metal intercalation in disordered carbon anode materials , 2019, Journal of Materials Chemistry A.

[10]  A. Durajski,et al.  Superconductivity in bilayer graphene intercalated with alkali and alkaline earth metals. , 2019, Physical chemistry chemical physics : PCCP.

[11]  A. Hirata,et al.  Lithium intercalation into bilayer graphene , 2019, Nature Communications.

[12]  A. Krasheninnikov,et al.  Reversible superdense ordering of lithium between two graphene sheets , 2018, Nature.

[13]  E. Kaxiras,et al.  Heterointerface effects in the electrointercalation of van der Waals heterostructures , 2018, Nature.

[14]  S. Okada,et al.  Highly Conductive and Transparent Large‐Area Bilayer Graphene Realized by MoCl5 Intercalation , 2017, Advanced materials.

[15]  Yutao Li,et al.  Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries , 2017, Advanced science.

[16]  A. Mukhopadhyay,et al.  Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study , 2017 .

[17]  T. Zhao,et al.  Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries , 2017 .

[18]  P. Ostrovsky,et al.  Ultrafast lithium diffusion in bilayer graphene. , 2017, Nature nanotechnology.

[19]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[20]  E. Kaxiras,et al.  Li intercalation at graphene/hexagonal boron nitride interfaces , 2016 .

[21]  S. Hasegawa,et al.  Direct Observation of Superconductivity in Calcium-Intercalated Bilayer Graphene by in situ Electrical Transport Measurements , 2015, 1508.07079.

[22]  A. Krasheninnikov,et al.  Solubility of Boron, Carbon, and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations , 2015 .

[23]  J. Greeley,et al.  First-principles analysis of defect-mediated Li adsorption on graphene. , 2014, ACS applied materials & interfaces.

[24]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[25]  Liangbing Hu,et al.  Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation , 2014, Nature Communications.

[26]  B. Yakobson,et al.  First-Principles Studies of Li Nucleation on Graphene. , 2014, The journal of physical chemistry letters.

[27]  Y. .. Wang,et al.  Assessing carbon-based anodes for lithium-ion batteries: a universal description of charge-transfer binding. , 2014, Physical review letters.

[28]  David J. Singh,et al.  Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[29]  A. Krasheninnikov,et al.  Ion impacts on graphene/Ir(111): interface channeling, vacancy funnels, and a nanomesh. , 2013, Nano letters.

[30]  D. Stradi,et al.  Elastic response of graphene nanodomes. , 2013, ACS nano.

[31]  Thomas F. Miller,et al.  Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries , 2012 .

[32]  P. Liljeroth,et al.  Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. , 2012, ACS nano.

[33]  K. Persson,et al.  Li absorption and intercalation in single layer graphene and few layer graphene by first principles. , 2012, Nano letters.

[34]  A. Thissen,et al.  Graphene on Rh(111) : Scanning tunneling and atomic force microscopies studies , 2012 .

[35]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[36]  Mauricio Terrones,et al.  Defects and impurities in graphene-like materials , 2012 .

[37]  A. Krasheninnikov,et al.  The Role of Stable and Mobile Carbon Adspecies in Copper- Promoted Graphene Growth , 2012 .

[38]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[39]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[40]  Jannik C. Meyer,et al.  From point defects in graphene to two-dimensional amorphous carbon. , 2011, Physical review letters.

[41]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[42]  Yoyo Hinuma,et al.  Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations , 2010 .

[43]  P. Medeiros,et al.  Adsorption of monovalent metal atoms on graphene: a theoretical approach , 2010, Nanotechnology.

[44]  Chananate Uthaisar,et al.  Lithium adsorption on zigzag graphene nanoribbons , 2009, 0910.5154.

[45]  Charles W. Monroe,et al.  Direct in situ measurements of Li transport in Li-ion battery negative electrodes , 2009 .

[46]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[47]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[48]  S. Grimme,et al.  Structures and interaction energies of stacked graphene-nucleobase complexes. , 2008, Physical chemistry chemical physics : PCCP.

[49]  Pekka Koskinen,et al.  Self-passivating edge reconstructions of graphene. , 2008, Physical review letters.

[50]  Stefan Grimme,et al.  Noncovalent Interactions between Graphene Sheets and in Multishell (Hyper)Fullerenes , 2007 .

[51]  C. Wang,et al.  Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. , 2005, Physical review letters.

[52]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[53]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[56]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[57]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[58]  T. Yamabe,et al.  Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage , 1994 .

[59]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[60]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .